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Abstract 

Coleopteran insects compensate for dietary protease inhibitors by a number of 

mechanisms.  To study this compensation response at the molecular level, the digestive 

proteases of Tenebrio molitor were studied. Biochemical studies of the pH optima and 

inhibitor sensitivity of proteases indicated the cysteine proteases were mostly in the 

anterior and serine proteases were in the posterior midgut of T. molitor larvae. Expressed 

Sequence Tags (ESTs) from T. molitor larval midgut cDNA libraries contained sequences 

encoding putative digestive proteases. Of a total of 1,528 cDNA sequences, 92 cDNAs 

encoded proteases, and 50 full-length cDNAs were grouped into serine, cysteine and 

metallo protease classes. Sequences tmt1a, tmt1b and tmt1c were identified as genes 

encoding isoforms of T. molitor trypsin, and tmc1a encoded T. molitor chymotrypsin. 

The general distribution cysteine protease transcripts in the anterior and serine protease 

transcripts in the posterior midgut, of T. molitor larvae, was in agreement with the 

biochemically-characterized compartmentalization of proteases. Expression analyses of 

selected transcripts demonstrated varied expression patterns across five developmental 

stages of T. molitor, with maximal expression of most protease transcripts in first instar 

larvae. Dietary serine and cysteine protease inhibitors fed in combination to early-instar 

T. molitor larvae caused a significant delay in larval growth in 21-day-old larvae. Real-

time quantitative PCR analysis of RNA isolated from larvae fed different protease 

inhibitor treatments indicated that dietary inhibitors affected the expression of serine and 

cysteine proteases. Larvae fed soybean trypsin inhibitor, a serine protease inhibitor, 

compensated by the hyperproduction of proteases from the same class, as well as the 

upregulation of cysteine proteases. A cysteine protease inhibitor, E-64, caused a 

reduction in the hyperproduction of all proteases, and, in combination with the soybean 

trypsin inhibitor, lowered the compensation response of T. molitor larvae to negligible 

levels. These data suggest that T. molitor larvae are more sensitive to the effects of 

cysteine protease inhibitors, perhaps because these proteases are the first line of defense 

for larvae against plant protease inhibitor. The bioassay and molecular studies suggested 



 

that combinations of inhibitors that target both serine and cysteine proteases are needed 

to effectively control larval infestations of T. molitor.  
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Abstract 

 

Coleopteran insects compensate for dietary protease inhibitors by a number of 

mechanisms.  To study this compensation response at the molecular level, the digestive 

proteases of Tenebrio molitor were studied. Biochemical studies of the pH optima and 

inhibitor sensitivity of proteases indicated the cysteine proteases were mostly in the 

anterior and serine proteases were in the posterior midgut of T. molitor larvae. Expressed 

Sequence Tags (ESTs) from T. molitor larval midgut cDNA libraries contained sequences 

encoding putative digestive proteases. Of a total of 1,528 cDNA sequences, 92 cDNAs 

encoded proteases, and 50 full-length cDNAs were grouped into serine, cysteine and 

metallo protease classes. Sequences tmt1a, tmt1b and tmt1c were identified as genes 

encoding isoforms of T. molitor trypsin, and tmc1a encoded T. molitor chymotrypsin. 

The general distribution cysteine protease transcripts in the anterior and serine protease 

transcripts in the posterior midgut, of T. molitor larvae, was in agreement with the 

biochemically-characterized compartmentalization of proteases. Expression analyses of 

selected transcripts demonstrated varied expression patterns across five developmental 

stages of T. molitor, with maximal expression of most protease transcripts in first instar 

larvae. Dietary serine and cysteine protease inhibitors fed in combination to early-instar 

T. molitor larvae caused a significant delay in larval growth in 21-day-old larvae. Real-

time quantitative PCR analysis of RNA isolated from larvae fed different protease 

inhibitor treatments indicated that dietary inhibitors affected the expression of serine and 

cysteine proteases. Larvae fed soybean trypsin inhibitor, a serine protease inhibitor, 

compensated by the hyperproduction of proteases from the same class, as well as the 

upregulation of cysteine proteases. A cysteine protease inhibitor, E-64, caused a 

reduction in the hyperproduction of all proteases, and, in combination with the soybean 

trypsin inhibitor, lowered the compensation response of T. molitor larvae to negligible 

levels. These data suggest that T. molitor larvae are more sensitive to the effects of 

cysteine protease inhibitors, perhaps because these proteases are the first line of defense 



 

for larvae against plant protease inhibitor. The bioassay and molecular studies suggested 

that combinations of inhibitors that target both serine and cysteine proteases are needed 

to effectively control larval infestations of T. molitor.  
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CHAPTER 1 - INTRODUCTION AND LITERATURE REVIEW 

1. Pest Control in the Stored Product Industry 

1.1. Need for Sustainable Stored Grain Insect Pest Management 

Flour and other grain-based processed foods represent value-added products, and the 

food industry does not tolerate even low levels of insect infestation. There is essentially zero 

tolerance for insect fragments or insect damage, irrespective of the established federal defect 

action levels (Kenkel et al., 1994). The occurrence of a single insect-infested sample may result 

in the rejection of an entire truck, train or barge load of grain (Hagstrum et al., 1999). Insect pest 

damage to grain, stored grain and grain by-products from grain causes significant losses to the 

food industry, estimated in millions of dollars annually. Insect pest control agencies are working 

toward sustainable stored grain insect pest management strategies that deliver high quality, safe, 

competitively priced food and grain products, within the regulatory framework of production for 

global markets and governments.  

1.2.  Economics of Food Safety 

In a study conducted by Storey et al. (1983) in the U.S., insects were detected in about 

one-fourth of over 4,000 grain samples from wheat stored for 1-4 years. A more recent study 

involving sampling in commercial grain elevators in Kansas revealed that more than 50% of 

infested samples of grain contained >10 insects/kg, and that grain residues likely were either 

densely infested with pest insects or uninfested (Arthur et al., 2006).  

Stored grain, free from insect fragments and contamination exceeding the normal 

tolerable limits, is not only a critical food safety issue but also important for trading of 

commodities in the international market. The annual worldwide pre-harvest losses due to insect 

pests, despite the use of insecticides, are approximately 15% of the total production costs, and 

are valued at over $ 100 billion (Krattiger, 1997). Additionally, post-harvest losses caused by 

insect infestation, a majority of which occur in the developing world, is estimated to be 15% of 

the world’s production (Herrera-Estrella, 2000).  
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1.3. Biological and Eco-friendly Methods of Pest Control 

With increases in human population and rapid depletion of natural resources, there is a 

demand for increased sustainable agricultural productivity. However, world events also have 

mandated new procedures to ensure food biosafety. With stringent regulations monitoring 

synthetic chemical-based insect pest management, and with the continued development of 

pesticide resistance, the need for alternative pest control options has become urgent.  Although 

transgenic cotton and maize crops are being produced widely in many developed countries, there 

is a continued need to discover new plant genes that provide resistance against pests because of 

regulatory and pest resistance issues. Plant genes encoding protease inhibitors (PIs) are prime 

candidates, with demonstrated activity against insect pests, with the added benefit of improving 

the nutritional quality of food in some cases (Lawrence and Koundal, 2002).  

2. Insect Digestive System 

2.1. The Insect Digestive System - A Model for Recent Study 

A dramatic growth of knowledge in the area of insect digestive physiology has occurred 

during the past decade. Interest in insect digestion waned after the development of synthetic 

insecticides in the 1940s. However, the environmental effects of some of these pesticides 

promoted an enthusiastic endeavor to pursue new avenues for insect control, one of them 

targeting the insect gut. The habitat and feeding diversity of insects, and the fact that the insect 

gut is a large and susceptible interface between the insect and its environment, have stimulated 

an increased understanding of gut function (Terra and Ferriera, 1994; 2005).  The insect 

digestive system is the first line of defense against a broad spectrum of toxins and anti-nutritional 

dietary factors that break down complex food components into simple products, and also serving 

as a protective barrier to toxins for vulnerable insect tissues and cells (Moon et al., 2004). 

Herbivorous insects feeding on plant tissues are attacked by a range of biochemical plant 

defenses, both constitutive and induced, in response to their attack on plants. The insect gut is 

therefore a viable target in the development of pest control methods, such as the use of 

transgenic plants expressing insect-specific toxins to control phytophagous insects. In order to be 

successful herbivores, insects need to be able to detoxify these plant compounds, or become 

insensitive to their toxic effect.  
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2.2.  The Insect Digestive Process  

The ingestion and digestion of plant material by insects triggers a series of physiological 

and biochemical events that result in the conversion of protein, carbohydrate and lipid in food to 

utilizable nutrients. These processes involve enzymes, and proteases are those enzymes that act 

on long polypeptide chains or on small peptides. The digestive process in insects is well 

organized and depends on the compartmentalization of digestive enzymes and on midgut fluid 

fluxes that translocate enzymes and products of digestion (Terra and Ferriera, 1994).  Terra and 

Ferriera also described evolutionary trends in and spatial distribution of insect gut enzymes. 

Generally, initial digestion occurs inside the peritrophic membrane, intermediate digestion in the 

ectoperitrophic space and final digestion at the surface of the midgut cells by integral microvillar 

enzymes or by enzymes trapped in the glycocalyx (Terra and Ferriera, 2005). For example, 

digestion in the coleopteran pest, Tenebrio molitor L. is thought to occur in the endoperitrophic 

space, except for final digestion that takes place on the surface of midgut cells under the action 

of a microvillar aminopeptidase.  

Most food molecules are complex polymers of protein and starch that are broken down 

sequentially in a three-step manner (Terra and Ferriera, 2005). Primary digestion is the 

dispersion and reduction in molecular size of food from polymers to oligomers. The reduction of 

oligomers to dimers is the intermediate phase in digestion, and the final step in digestion results 

in the production of monomers.  All steps occur in the midgut under the influence and action of 

digestive enzymes. 

2.3. Role of Proteases in Digestion 

In the initial digestion of proteins, proteases (endopeptidases) are involved in breaking 

the internal bonds in proteins.  Dipeptides are hydrolyzed by dipeptidases. Oligopeptides formed 

as a result of protease action are attacked from the N-terminal end by aminopeptidases and from 

the C-terminal end by carboxypeptidases releasing one amino acid at each step.  

Proteases are classified according to their mechanistic action into serine, cysteine, 

aspartic and metallo-proteases (Barrett, 1986). In insects, proteases are secreted only in response 

to dietary protein entering the midgut, yet Bown et al. (1997) found 20% differentially regulated 

proteases from among the cDNAs expressed in the insect midgut.  Terra and Ferriera (1994) 
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emphasized the need to study insect digestive enzymes in order to further understand their 

mechanisms, substrate interactions and inhibitor specificity.      

3. Protease Inhibitors (PIs) 

3.1. Introduction to Protease Inhibitors as Natural Biopesticides 

Protease inhibitors (PIs) are synthesized by plants and are the most-studied class of plant-

defense proteins. They have long been regarded of as natural, phytochemical defenses against 

arthropod attack, primarily because of their anti-nutritional effects that in turn negatively impact 

insect growth and development. The expression of PIs in plants is induced under stress-prone 

conditions, such as mechanical wounding, insect feeding, pathogen attack, drought and UV 

exposure (Schaller and Ryan, 1996; Conconi et al., 1996; Giri et al., 1998). These plant 

compounds are the end-products of the many defense cascades activated by plant elicitors, such 

as systemin, ethylene, methyl jasmonate, abcissic acid, salicylic acid, fungal cell wall oligomers, 

larval oral secretions, and electrical and hydraulic signals, leading to their accumulation in plant 

tissues (Patankar et al., 1999; Ryan, 1990; Wildon et al., 1992; Schaller and Ryan, 1996; Korth 

and Dixon, 1997). The toxicity of PIs to insects and their role in defense is attributed to their 

accumulation in quantities that are greater than those required for inhibiting endogenous 

proteases. The inhibition of proteases by inhibitors disrupts the normal insect digestive process, 

depletes the amino acid reserve, and affects other processes, such as proteolytic activation of 

enzymes, and molting (Hilder et al., 1993). A PI found in soybean first reported by Read and 

Haas (1938) has been well studied. Among the inhibitors of insect digestive enzymes, the role of 

trypsin inhibitors has been more thoroughly investigated. The toxicity of the soybean trypsin 

inhibitor to larvae of the confused flour beetle, Tribolium confusum Jacquelin du Val, was 

demonstrated by Lipke et al. in 1954. The majority of plant protease inhibitors have been 

described in plants belonging to families Leguminosae, Solanaceae and Graminaceae 

(Richardson, 1977; 1991). Many experiments have been conducted to identify the function and 

distribution of PIs in higher plants. PLANT-PIs, a database of all known plant inhibitors, was 

developed to facilitate retrieval of such information (De Leo et al., 2002).  
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3.2. Factors Influencing the Success or Failure of PIs as Bioinsecticides 

The exploitation of plant defenses against insects is a potential insect pest control option, 

similar to cultivating and breeding insect-resistant plant varieties. However, insect counter-

adaptation to plant defense mechanisms has been a major obstacle in insect pest management. 

Entomologists concerned with crop protection and plant resistance are faced with a perennial 

struggle of overcoming insect tolerance or resistance to integrated approaches. Jongsma and 

Bolter (1996) outlined factors to be considered before incorporating PIs artificially into an insect 

diet, or expressing a PI gene in a plant.  These include the PI concentration (Ki) for interaction 

with a protease, the stability of the PI in the insect gut, the complement of inhibitors needed to 

inhibit all gut proteases, and the insect’s ability to adapt to protease inhibition. Factors affecting 

the potency of a protease inhibitor include the structural compatibility of the PIs with the 

protease(s) in the target organism, the physiological conditions within the midgut, and the dietary 

quality (e.g. polyphenoloxidase activity, protein quality, and quantity) (Laskowski, 1985; 

Broadway and Duffey, 1988; Felton et al., 1989; Oppert et al., 1993; Christeller et al., 1994; 

Broadway, 1995). A review of insect proteases and protease inhibitors included approximately 

11 biochemical and physiological factors that contribute to the effectiveness of PIs (Reeck et al., 

1997). Information about protease-protease inhibitor interactions between an insect and it’s 

target crop often is lacking, and much of the research conducted on PIs in insects has taken into 

account only one or a few of the aforementioned factors (Jongsma and Bolter, 1997).  The co-

evolution of plant PIs and insect proteases provides an interesting new paradigm for new 

ecological, physiological and biochemical research.  

3.3.  Adaptation to Protease Inhibitors 

The effects of biopesticides based on proteinaceous PIs of insect digestive proteases 

have, in many cases, been ineffective because of an insect’s ability to digest or tolerate these 

proteins (Konarev, 1996; Oppert, 2000). Responses to ingested PIs include the expression of 

proteases for which the plant has no inhibitors, the proteolytic degradation of PIs, and mutations 

in insect protease genes that render the proteases less sensitive to PIs without the loss of protease 

activity (Jongsma and Bolter, 1997). In some cases, insects have adapted to plant protease 

inhibitors by producing inhibitor-insensitive proteases (Bolter and Jongsma, 1995; Jonsgma et 

al., 1995; Bown et al., 1997; Cloutier et al., 2000; Mazumdar-Leighton and Broadway, 2001).  
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In others, insects combat the plant PI by producing inhibitor-degrading/fragmenting proteases in 

the midgut to compensate for the effects of the inhibitors (Michaud et al., 1995; Giri et al., 1998; 

Franco et al., 2003; Girard et al., 1998; Patankar et al., 2001). De Leo et al., (1998) found 

Spodoptera littoralis larvae that over-produce existing digestive enzymes to essentially ‘titre’ out 

the inhibitors. Some studies have indicated that cowpea bruchids, Callosobruchus maculatus 

(F.), employ all three of the aforementioned strategies as a response to being fed dietary 

soyacystatin (scN) (Moon et al., 2004). Studies on the dietary factors that influence the number 

and level of activity of protease inhibitor resistant-enzymes in midguts of larval lepidopterans 

revealed a prolongation of the retention time of food in the digestive tract as well as the initiation 

of an increased level of activity of proteolytic enzymes not susceptible to inhibition by a 

particular protease inhibitor (Broadway, 1997).  The two responses were proposed to be linked, 

because food was retained in the gut prior to the secretion of new proteolytic enzymes.  

Furthermore, the quantity and quality of protein had no significant effect on the level of activity 

of inhibitor-resistant enzymes. High levels of PIs targeting cysteine and aspartic proteases 

induced the production of papain inhibitor-insensitive enzymes in the Colorado potato beetle, 

Leptinotarsa decemlineata (Say) (Bolter and Jongsma, 1995). In addition, Broadway (1996b) 

noted that isozymes of gut proteases, the regulation of the level of activity of inhibitor-resistant 

enzymes, and preadaptation to PIs from non-host plants were a few factors critical in rendering 

insects resistant to PIs. Other studies have demonstrated that insect gut proteases degrade 

inhibitors and thus neutralize their toxic effects. Orr et al. (1994) have shown that Diabrotica 

spp. larval proteases are capable of degrading multicystatins of potato tubers. Girard et al. (1998) 

demonstrated that in interactions between larval proteases of a coleopteran, the mustard beetle, 

Phaedon cochleariae (F.), and PIs, serine proteases in association with leucine aminopeptidases 

rapidly cleaved the inhibitors.  It was suggested that, in fact, insects derive dual benefit from 

digesting PIs, in that the digestion is not disrupted, and sulfur-rich amino acids provide 

additional nutrition for the insect. 

This compensatory, adaptive response to PIs has been found even in tritrophic ecological 

interactions. In a study that monitored the inhibitory activity of recombinant oryzacystatin (OCI) 

along the potato - herbivore - predator continuum, predatory organisms adapted their digestive 

metabolism to the presence of plant anti-digestive proteins ingested by their herbivorous prey 

(Bouchard et al., 2003). Therefore, studies that investigate protease responses to inhibitors 
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should monitor all the inhibitory effects of PI-expressing plants, not only on the herbivorous 

insects targeted, but also to the organisms likely to consume these pests. 

3.4. Conflicting Results in the in vitro and in vivo Evaluation of PIs  

Results of a study by Ortego et al., 1998, to evaluate the effects of protease inhibitors on 

the larvae of the weevil Aubeonymus mariaefranciscae Roudier, indicated that, although in vitro 

screening may be useful in selecting effective PIs, in vivo validation through feeding trials is 

necessary. It appears that insects have evolved well-developed compensatory responses to 

enzyme inhibitors under in vivo environments that cannot be tested effectively under in vitro 

conditions. The efficacy of a protein when expressed in a crop plant also may differ from that 

demonstrated in an artificial diet  (Edmonds et al., 1996). To test adaptive responses of insects to 

plants containing protease inhibitors, Broadway (1995) evaluated the effects of cabbage PIs on 

the cabbage looper, Trichoplusia ni (Hübner) and the corn earworm, Helicoverpa zea (Boddie). 

PIs reduced the growth and development of T. ni but had no influence on the level of digestion in 

H.  zea.  Apparently, insects not affected by protease inhibitors developed compensatory 

responses in the form of a hyper production of proteolytic enzymes. These data indicated that in 

vitro inhibition is not a good predictor of toxicity and were the first report of a shift in the 

relative proportion of proteolytic enzymes following insect ingestion of PIs (Broadway, 1995). 

Although the predominant trypsin-like enzymes were susceptible to trypsin inhibitors under 

‘normal’ conditions, they were at least partially resistant to inhibition (i.e. weak binding capacity 

for inhibitors) following the ingestion of inhibitors.  In another study, larvae of tobacco 

budworm, Helicoverpa armigera (Hübner) were stunted, but no mortality was observed when 

fed transgenic tobacco expressing a PI from the giant taro, Alocasia macrorrhiza Schott (Wu et 

al., 1997). Larvae fed the transgenic plants had an 8% increase in inhibitor-insensitive proteases, 

establishing the existence of an adaptive mechanism. 

3.5. Differential Gene Regulation Influencing Adaptation 

Ingestion of soybean Kunitz trypsin inhibitor (SKTI) by H. armigera larvae induces the 

production of inhibitor-insensitive protease activity (Bown et al., 1997).  Gatehouse et al. (1997) 

also found a significant down-regulation of H. armigera larval trypsin genes and an up-

regulation of chymotrypsin in response to dietary trypsin inhibitors.  To phytophagous insects 

such as H. armigera, the presence of a wide array of potential proteolytic enzymes with differing 
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sensitivity to PIs is a distinct advantage. Recently, a study by Bown et al. (2004), revealed the 

complexity of H. armigera’s response to the ingested SKTI inhibitor.  The response consisted of 

an initial up-regulation of all protease genes, followed by a longer-term down-regulation of 

inhibitor-specific protease genes, leading to a final up-regulation in inhibitor-insensitive 

proteases.  The presence of non-target proteases in the gut extract of the Colorado potato beetle, 

Leptinotarsa decemlineata (Say), has presented questions about the stability of target protease 

inhibitors, such as cystatins, in the insect gut (Michaud et al., 1995). Ahn et al. (2004) 

investigated the response of C. maculatus to a cysteine PI, scN, and found that bruchids 

reconfigure their major digestive proteases by inducting unique cysteine protease isoforms with 

superior auto-processing efficacy. Cowpea bruchids are able to overcome plant PIs by 

overproducing existing digestive enzymes, producing inhibitor-insensitive enzymes and by 

activating the expression of hydrolyzing enzymes that degrade enzymes when challenged by 

dietary scN (Zhu-Salzman et al., 2003). Moon et al., (2004) conducted a transcriptomic analysis 

of the response of C. maculatus guts challenged by scN, and found that numerous anti-microbial 

peptide genes were upregulated. This strengthening of insect defense against microbes was seen 

as an unintended negative side effect to using PIs.  Other responses to plant PIs included an 

increased ferritin expression a decreased cytochrome C oxidase expression. Adaptation to 

protease inhibitors in larvae of the tobacco budworm, Heliothis virescens (Fabricius), was 

mediated by the synthesis of new proteases (Brito et al., 2001). H. virescens larvae express new 

trypsin molecules that form oligomers and are apparently less affected by PIs because of tighter 

binding to the substrate (lower Km values) and a putative decreased affinity for PIs. 

Several molecular studies have characterized insect digestive carboxypeptidases (Ramos 

et al., 1993; Bown et al., 1998; Edwards et al., 2000; Bown and Gatehouse, 2004; Bayes et al., 

2005). Bayes et al. (2005) identified a carboxypeptidase B from H. zea and elucidated the 

structural features that would render it insensitive to potato carboxypeptidase inhibitor (PCI) and 

other plant inhibitors. Four aminopeptidase N isoforms were identified from T.  ni  (Wang et al., 

2005). Because this enzyme also has been implicated in a receptor for some of the microbial 

toxins of Bacillus thuringiensis (Bt), this study has useful implications in T. ni-Bt toxin 

interactions, and in developing the role of the aminopeptidases in resistance management of Bt 

technology. 



 9

From all of the aforementioned examples of research on insect digestive protease-PI 

interaction, it is clear that the mechanism(s) controlling and regulating the insect’s response to 

protease inhibitors is complex. The biochemical and molecular bases of these plastic responses to 

enzyme inhibitors are not well understood. Studying the adaptation mechanism to a particular 

inhibitor needs to be put into context as part of an overall response that may include more than 

one adaptation mechanism.  

3.6. Transcriptomic Studies on Insect Digestive Proteases  

In addition to studying specific enzyme/protein responses to protease inhibitors, larger-

scale efforts to study the entire transcriptome of the gut of some insects have been made in an 

attempt to identify potential targets for pest control. Gene expression patterns in response to PIs 

have been studied in various lepidopteran insects (Bown et al., 1997, 2004; Gatehouse et al., 

1997; Chougule et al., 2005) and in some coleopterans (Michaud et al., 1995; Zhu-Salzman et 

al., 2003). Pedra et al. (2003) conducted a transcriptomic analysis of a cDNA library from the 

cowpea bruchid, Callosobruchus maculatus (Fabricius), which revealed digestive enzymes that 

could be targeted for future control strategies. In another study, the transcriptome of salivary 

glands from the adult female mosquito, Anopheles (Nyssorhynchus) darlingi was analyzed 

(Calvo et al., 2004), specifically identifying secreted salivary products in order to further 

understand salivary gland functioning and salivary gland constitution. This information provided 

potential tools for the systematic analysis of molecules that may play an active role in blood 

feeding and the pathogenesis of malaria. Transcriptome information and analysis from midguts 

of the adult female biting midge, Culicoides sonorensis (Noriega et al., 1994) revealed that of 

1,719 serum-fed adult female midgut ESTs analysed, the most abundant functional group 

contained 600 ESTs that encoded putative proteins with proteolytic and peptidolytic functions 

(Campbell et al., 2005). These experiments were conducted to help elucidate possible genetic 

determinants of arbovirus infection and to devise potential strategies to control vector-based 

infection. Xu et al. (2005) identified the molecular components of several Anopheles processes 

related to blood digestion, midgut expansion, and response to Plasmodium-infected blood, 

including digestive enzymes and other factors, using a microarray-based transcriptomic analysis. 

Hence, transcriptomic studies have provided a basis for the identification of new potential targets 

for pest/vector control. 
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3.7. Use of an Inhibitor Combination Strategy  

The use of multiple PIs to inhibit the full spectrum of insect gut proteases may provide an 

effective control strategy for some pests. A combination of inhibitors targeting more than one 

protease class was successful in synergistically reducing the growth and causing mortality in the 

red flour beetle, Tribolium castaneum (Herbst) (Oppert et al., 1993; 2003). A follow-up in vitro 

study of the T. castanuem gut proteases revealed a shift in the proteolytic enzyme profile when 

beetles were fed inhibitors of different protease classes, but an overall decrease in protease 

activities when beetles were fed a combination of inhibitors (Oppert et al., 2005). Therefore, an 

appropriate combination of inhibitors can have a synergistic negative effect on growth and 

development. Similarly, Markwick et al. (1995) reported that the most significant reductions in 

the growth rate of larvae of the codling moth, Cydia pomonella (Linnaeus), occurred when 

combinations of protease inhibitors were fed in their diet. In general, proteolytic enzymes are 

transcriptionally regulated, and both the quantity and quality of dietary protein influence 

regulation (Liddle et al., 1986; Tsuzuki et al., 1991; Sharara et al., 1993; Noreiga et al., 1994). 

Insects often possess multiple protease genes encoding various protease isoforms with different 

sensitivities to a particular inhibitor. Undoubtedly, a complex of regulatory mechanisms at the 

level of transcriptional, translational, or enzymatic activation are involved in detoxification of the 

ingested inhibitors. Questions regarding the physiological pathway(s) responsible for the 

regulation of proteases in midguts of herbivorous insects remain unanswered (Broadway, 1997). 

Understanding these regulatory mechanisms will provide necessary information to improve the 

efficacy of protease inhibitors as insect control agents. Inhibitors effective against both ‘normal’ 

and induced proteases may need to be designed through multiple gene insertions to provide for 

effective protection.   

4. Tenebrio molitor Linnaeus (Yellow Mealworm) 

4.1. Life cycle of Tenebrio molitor  

Insects can cause serious infestation problems in stored products that are of both plant 

and animal origin. Coleopteran pests belonging to the family Tenebrionidae occur in stored grain 

as well as in animal produce. The yellow mealworm, Tenebrio molitor L., is a freeze-intolerant 

omnivorous storage pest that damages grains, grain products, grain by-products, meat, and 
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feathers. Pests that infest animal products have been demonstrated to increase digestive protease 

and aminopeptidase enzyme activities (Baker, 1986).   

Tenebrio molitor is one of the largest pests found in stored-grain products.  The insect is 

indigenous to Europe, but is currently cosmopolitan in distribution. T. molitor is univoltine, with 

adults laying 200-300 eggs that are oval, opaque and shiny in appearance. The eggs hatch into 

yellowish, brown larvae that grow up to 30 mm in length and progress through several instars 

varying from 8 to more than 20 (Cotton and St George, 1929), over a period of approximately 3 

months or more, depending on physical conditions and food source. In the spring, the larvae 

move to the surface of food, molt to the prepupal stage for a few days before becoming pupae. 

Pupae may also be observed on the surface of flour and are up to 16 mm in length with a row of 

characteristic lateral lamellae on each side. The pupal stage lasts approximately 3 weeks before 

pupae develop into black beetles in the summer. The length of the life cycle depends on food 

availability and the environmental conditions. The shortest period from the egg to adult stage is 

about 120 days. The longest period recorded has been about 629 days. Under optimal laboratory 

conditions (25°C, 60-70% RH, 16:8 L: D cycle) the time for completion of its life cycle is about 

6 months.  

4.2. Tenebrio molitor Digestive Proteases 

4.2.1. Occurrence and Midgut Compartmentalization of Serine and Cysteine Proteases 

Tenebrio molitor belongs to the coleopteran family Tenebrionidae, and its Cucujiformia 

ancestor was proposed to be a beetle adapted to ingest seeds rich in naturally occurring PIs by 

producing a cysteine protease for food digestion, instead of the common insect serine proteases 

(Terra and Cristofoletti, 1996). Aspartic proteases were found in the gut of insects in most 

families of Coleoptera including T. castaneum (Blanco-Labra et al., 1996). However, further 

studies clarifying the origin, specificity and structure of insect cathepsin-D like enzymes, are 

necessary. T. molitor has been used as a model system to study insect proteases since 1964. Thie 

and Houseman (1990) were the first to report compartmentalization of both serine and cysteine 

proteases in the T. molitor midgut.  Proteases from the cysteine and serine class were found in 

areas of the gut with optimal conditions for catalytic activity of the enzymes. Cysteine proteases 

were localized to the anterior midgut, and serine proteases were found in the posterior midgut. 

This was the first documented case of serine and cysteine proteases in an insect midgut. This 
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study provided the basis for further protein and molecular characterization of T. molitor digestive 

proteases. Terra and Cristofoletti (1996) later confirmed this compartmentalization, and proposed 

that the maximal activity of cysteine protease was in the acidic anterior midgut but that 

instability of the enzyme occurs in the posterior midgut, which has a higher pH. This 

compartmentalization was presumed to be advantageous to T. molitor, as the activity of cysteine 

proteases in the anterior midgut may inactivate ingested serine protease inhibitors prior to their 

contact with serine proteases in the posterior midgut.  

4.2.2. Early Studies on Tenebrio molitor Proteolytic Enzymes 

Applebaum et al. (1964) identified the proteolytic components trypsin, carboxypeptidase 

B and aminotripeptidase in the larval midgut of T. molitor. T. molitor larval and imaginal 

chymotrypsin, as well as imaginal trypsin have been isolated and described (Garty 1979, Ureili 

1982, Golan 1981). These studies suggested that in T. molitor adult trypsin and chymotrypsin 

differ distinctly from comparable larval proteases, although both developmental stages inhabit 

the same milieu (Applebaum, 1985). Therefore, the genetic complement of T. molitor encodes 

information for trypsins and chymotrypsins that are differentially expressed in larvae and adults. 

A protocol developed by Zwilling (1968) for the purification of T. molitor α- and β-proteases 

demonstrated their unusually high stability against inactivation. Zwilling et al. (1972) later 

identified a protease from adult T. molitor (β-protease) that lacked tryptic cleavage specificity 

and suggested that the enzyme was a “missing link” in protease evolution, based on differences 

in the structural properties of the catalytic site. However, the primary structural features 

homologous to the trypsin/chymotrypsin group were conserved. Levinsky et al. (1977) isolated 

and characterized a trypsin-like enzyme from the midgut of T. molitor larvae and concluded that 

T. molitor was the only stored-product pest with digestive trypsin, chymotrypsin and 

carboxypeptidase B.  However, many insects with these enzyme spectra have since been 

described. Cristofoletti and Terra (2000) examined the thermodynamic and substrate-binding 

properties of a midgut microvillar aminopeptidase from T. molitor. Ferriera et al. (1990) detected 

the presence of digestive enzymes in secretory vesicles in the T. molitor larval midgut. Intra-

cellular membrane-bound enzymes were secreted by exocytosis, including amylase from the 

anterior midgut, and carboxypeptidase and trypsin from the posterior midgut. Cristofoletti et al. 

(2001) elucidated an exocytic route for digestive enzyme secretion in T. molitor larvae, using 

immunocytolocalization studies, to demonstrate that protease-containing vesicles are discharged 
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by apocrine secretion from the anterior midgut, and that trypsin is released by exocytosis from 

the posterior midgut.  A summary of the different T. molitor proteases and their properties is 

provided in Table 1.1. 

4.2.3. Recent Studies on T. molitor Midgut Proteases 

A novel trypsin-like serine protease from the posterior midgut of T. molitor larvae, 

TmT1, was purified to homogeneity, and the N-terminus was identified as 

IVGGSSISISSVPXQIXLQY (Tsybina et al., 2005). The comparative N-terminal analysis also 

revealed that TmT1 contained 50-72% amino acid residue identity with other insect trypsin-like 

enzymes and 44-50% amino acid residue identity with mammalian trypsins. Similarly, the 

chymotrypsin-like protease, TmC1, also was isolated from the posterior midgut, purified to 

homogeneity, and the N-terminus was IISGSAASKGQFPWQ (Elpidina et al., 2005).  

An elaborate study of the spectrum of T. molitor larval digestive proteases has 

determined the distribution of total proteolytic activity in the midgut regions (Vinokurov et al., 

2006a & b, in press). The majority of trypsin-like protease activity, was due to three anionic and 

one cationic protease activities, and was mostly in the posterior midgut. Four anionic and one 

cationic chymotypsin-like activities were found in the posterior midgut. Six different cysteine 

protease activities were detected, predominantly in the anterior midgut. These data further 

elucidate the complexity and compartmental regulation of digestive proteases in T. molitor 

larvae.  

4.2.4. Molecular Studies on T. molitor Midgut Proteases 

Five cDNAs encoding procathepsin-L- (pCAL) like proteases were cloned and sequenced 

from the T. molitor larval midgut (Cristofoletti et al., 2005). The characterization and 

immunolocalization of two of the major corresponding enzymes indicates that T. molitor has 

both lysosomal and digestive cathepsin-L like proteases (CALs) and that digestive CALs 

originate from lysosomal CALs by gene duplication and independent evolution. To date, there 

are only five digestive protease cDNAs from T. molitor available at GenBank (AY207373, 

AY332270, AY33271, AY337517 and AY332272).  
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5. Molecular Characterization of Digestive Proteases 

5.1. Sequence Information on cDNAs Encoding Digestive Protease in Other Insects  

According to the review of Terra and Ferriera (2005), a total of 109 insect trypsin 

sequences (complete and incomplete), 63 complete sequences of insect chymotrypsins, and 12 

cathepsin-L like sequences corresponding to eight species of coleopterans and hemipterans, have 

been registered in GenBank. The insect digestive carboxypeptidases A and B have been cloned 

and sequenced from Diptera (Ramos et al., 1993; Bown et al., 1998; Edwards et al., 2000; Bown 

and Gatehouse, 2004), and over 20 midgut aminopeptidase cDNAs have been cloned from 10 

lepidopteran species (Nakanishi et al., 2002; Agrawal et al., 2002; Rajagopal et al., 2003).   

5.2. Benefits of Characterizing cDNAs Encoding Digestive Enzymes 

The molecular characterization of T. molitor digestive proteases is a prerequisite to 

understanding the nature and properties of individual digestive proteases. This information 

would be useful in the elucidation the compensatory response of T. molitor to PIs. Advances in 

molecular biological techniques have facilitated the validation of biochemical data and enzyme 

characterization. For example, cloning cDNA sequences encoding digestive enzymes enables the 

expression of recombinant enzymes that may used to synthesize antibodies, which can then be 

used in western blots or localization studies. RNAi studies or site-directed mutagenesis can also 

be used to evaluate and elucidate structure/function studies of digestive proteases. Microarrays 

and real-time quantitative PCR can be used to evaluate patterns of gene regulation.  

6. Research Hypotheses and Objectives 

6.1. Rationale and Hypotheses 

As was previously discussed, a single digestive enzyme protease inhibitor (PI) cannot be 

used against all herbivorous insects because an inhibitor may lose its potency due to changes in 

the relative proportion of digestive enzymes in the midgut. Thus, the success rates of PIs may be 

improved when combinations of inhibitors are expressed to cover the full spectrum of proteases 

in the gut. Therefore, this thesis is a study of the genetic complement encoding digestive 

proteases in the midgut of T. molitor larvae, as well as an evaluation of the response of these 

proteases to single and double PI treatments. After considering the previously reviewed 



 15

mechanisms of adaptation that insects have adopted in response to PIs, the following hypotheses 

are proposed: 

1. Protease inhibitors have a negative impact on development of T. molitor larvae. 

2. Cysteine proteases are upregulated in response to dietary serine protease inhibitors. 

3. Serine proteases are upregulated as a response to dietary cysteine protease inhibitors. 

Therefore, the general objective of this study was to understand the compensatory mechanism 

that T. molitor uses for adaptation to dietary protease inhibitors.  

6.2. Research Objectives 

The specific objectives are four-fold: 

1.  To understand the basic digestive physiology of T. molitor larvae and to characterize 

biochemical properties of T. molitor digestive proteases. 

2. To identify genes expressed in the gut of T. molitor larvae with an EST approach, and to 

characterize the cDNAs that encode putative digestive proteases. 

3. To investigate the role of individual protease genes in food digestion by studying their 

temporal and spatial expression patterns.  

4. To investigate and evaluate compensatory mechanisms of T. molitor larvae to dietary serine 

and cysteine protease inhibitors. 

6.3. Scope of the Project  

The aforementioned objectives are proposed to explore the prospect of developing 

transgenic grain expressing protease inhibitors as stored grain biocontrol agents. The results and 

inferences from this study will broaden the basis of our understanding of the co-evolving 

interaction between PIs and insects.  The information provided by this study may be applied to 

field pests as well.  This research will help to understand the long-term complex compensatory 

regulatory mechanism to digestive protease inhibitors in coleopteran insects. Understanding the 

expressed protease profile in the midgut of T. molitor, which utilizes primarily two classes of 

proteases for digestion under laboratory dietary conditions, will significantly enhance further 

studies aimed developing new targets for coleopteran pest control based on PIs. 
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Table 1.1. Table of proteases identified from Tenebrio molitor 

 

 

 

 

 

Protease Name Source Method of Isolation Substrates 

Hydrolysed

Enzyme assay 

conditions

Inhibitors Activators Molecular 

Mass

pI Optimal 

pH

Optimal 

tempe-

rature

Reference Other information

1 Aminopeptidase Microvilli of 
larval midgut 
membrane

Differential 
centrifugation, calcium 
precipitation, partial 
ultrasound disruption

LpNA, 1 mM 50 mM Tris-HCl, 
pH 7.8

Ferriera, C. et al., (1990) 
Digestive enzymes 
associated with the 
glycocalyx, microvillar 
membranes and sesretory 
vesicles from midgut cells 
of Tenebrio molitor larvae. 
Insect Biochem  20: 839-
847.

Membrane-bound, 
associated with 
microvilli. More active in 
the posteriar midgut.

2 Aminopeptidase Posterior third of 
larval midgut

*Papain-release from 
midgut cell 
membranes, 
chromatography on 
Alkyl-Superose, Mono 
Q, Phenyl-Superose 
(all FPLC); **CHAPS-
solubilization from 
midgut cell 
membranes, 
preparative 
electrophoresis, Mono 
Q

Broad specificity 
towards N-terminal 
aminoacyl residue of 
peptides except of 
acidic residues

Routine: 1 mM 
LpNA, 100 mM 
Tris-HCl, pH 7.8

Amastatin - slowly 
tight-binding, 
bestatin and 
amynoacyl 
hydroxamates - 
rapidly reversible

*90000 
**103000

8.0 
stable at 
5.0-10.8

Cristofoletti, P. T. and  
Terra, W. R. (1999) 
Specificity, anchoring, and 
subsites in the active center 
of a microvillar 
aminopeptidase purified 
from Tenebrio molitor 

(Coleoptera) midgut cells. 
Insect Biochem Mol Biol 

29: 807-819.

A single membrane-
bound AP in larval 
midgut. 55% of the 
microvillar proteins in 
posterior third of midgut. 
Glycoprotein rich in 
mannose. Is inserted into 
the microvillar 
membranes by a C-
terminal anchor. 
Resembles mammalian 
aminopeptidase N (EC 
3.4.11.2 ). Broad 
specificity with exception 
of acidic aminoacyl 
residues, prefers tri- and 
tetrapeptides relative to 
di- and pentapeptides. 
Has 4 subsites.
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Table of proteases identified from Tenebrio molitor (contd.) 

  Protease Name Source Method of 

Isolation 

Substrates 

Hydrolysed 

Enzyme assay 

conditions 

Inhibitors Activators Molecular 

Mass 

pI Optimal 

pH 

Optimal 

tempe-

rature 

Reference Other information 

3 Aminopeptidase Posterior 
third of 
larval 
midgut 

Papain-release 
from midgut cell 
membranes, 
chromatography 
on Alkyl-
Superose, Mono 
Q, Phenyl-
Superose (all 
FPLC); sometimes 
CHAPS-
solubilization from 
midgut cell 
membranes, 
preparative 
electrophoresis, 
Mono Q 

LpNA Routine: 1 mM 
LpNA, 100 
mM Tris-HCl, 
pH 7.8 

1,10-
Phenantroline, 
Ki 1.2 mM (2 
mM causes 
40% 
inhibition); 
EDTA 
(reversible) - is 
affected by pH 
(pK 5.8) 

      8.0   Cristofoletti, 
P.T. and 
Terra,W.R. 
(2000) The role 
of amino acid 
residues in the 
active site of a 
midgut 
microvillar 
aminopeptidase 
from the beetle 
Tenebrio 

molitor. 

Biochim 

Biophys Acta 
1479: 185-195. 

Is a metallopeptidase close to 
M1 family of peptidases with 
1 Zn atom in the active site. 
Catalysis depends on a 
catalytic metal, a carboxylate 
and a protonated imidazole 
group, substrate binding 
relies in 1 phenol and 1 
carboxylate  groups. 
Resembles mammalian 
aminopeptidase N, but differs 
in detais of substrate binding 
and in residues involved in 
catalysis. Isoamyl alcohol 
and sodium fluoride do not 
affect activity. 

4 Aminotripeptidase 
(Exopeptidase) 

Larval 
midgut 

Column 
chromatography 
on ECTEOLA-
cellulose and CM-
cellulose 

Leu-gly              Applebaum 
S.W. et al. 
(1964) 
Comparative 
studies on 
proteolytic 
enzymes  of 
Tenebrio 

molitor L. 
Comp Biochem 

Physiol 11: 85-
103. 

SBTI-resistant. 

5 Carboxypeptidase 
A 

Larval 
posterior 
midgut 

Differential 
centrifugation, 
calcium 
precipitation, 
partial ultrasound 
disruption 

ZGlyPhe, 15 mM 50 mM Tris-
HCl, pH 8.0, 
50 mM NaCl 

            Ferriera, C. et 
al. (1990) 
Digestive 
enzymes 
associated with 
the glycocalyx, 
microvillar 
membranes and 
sesretory 
vesicles from 
midgut cells of 
Tenebrio 

molitor larvae. 
Insect Biochem 
20: 839-847. 

Soluble. Glycocalyx-
associated. More active in 
posterior midgut. 
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Table of proteases identified from Tenebrio molitor (contd.) 

  

  Protease Name Source Method of 

Isolation 

Substrates 

Hydrolysed 

Enzyme assay 

conditions 

Inhibitors Activators Molecular 

Mass 

pI Optimal 

pH 

Optimal 

tempe-

rature 

Reference Other information 

6 Carboxypeptidase 
B (Exopeptidase) 

Larval 
midgut 

Column 
chromatography 
on ECTEOLA-
cellulose and CM-
cellulose  

Benz-gly-lys               Applebaum 
S.W. et al. 
(1964) 
Comparative 
studies on 
proteolytic 
enzymes  of 
Tenebrio 

molitor L. 
Comp Biochem 

Physiol 11: 85-
103. 

SBTI-resistant. 

7 Chymotrypsin Larvae       DFP, SBTI, 
BBI, CI 

  23,400       Garty, N., 1979. 
Isolation and 
characterization 
of a 
chymotrypsin-
like enzyme 
from Tenebrio 

molitor larvae. 
M.Sc. thesis, 
Faculty of 
Agriculture, the 
Hebrew 
University, 
Rehovot, Israel. 
Quoted in 
Applebaum, 
S.W., 1985. 
Biochemistry of 
digestion. In: 
Comprehensive 
Physiol., 
Biochem. and 
Pharmacol. of 
Insects (Edited 
by Kerkut, G.A. 
and Gilbert, 
L.I.), v. 4, pp. 
279-311. 
Pergamon 
Press, Oxford. 

10 half-cystines. Dissociates 
during SDS-PAGE into 3 
subunits with Mr 400, 11000 
and 13000. Has higher 
affinity fir ATEE than bovine 
chymotrypsin, but similar 
charge properties. 
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Table of proteases identified from Tenebrio molitor (contd.) 

 

  Protease Name Source Method of 

Isolation 

Substrates 

Hydrolysed 

Enzyme 

assay 

conditions 

Inhibitors Activators Molecular 

Mass 

pI Optimal 

pH 

Optimal 

tempe-

rature 

Reference Other information 

8 Chymotrypsin Imago Chromatography 
on CM-cellulose 

ATEE, 
ATpNA 

  TPCK, 
PABA 

Ca2++         Urieli, N., 
1982. Isolation 
and 
characterization 
of a 
chymotrypsin-
like enzyme 
from the 
digestive tract 
of Tenebrio 

molitorand 

Locusta 

migratoria. 
M.Sc. thesis, 
Faculty of 
Agriculture, the 
Hebrew 
University, 
Rehovot, Israel. 
Quoted in 
Applebaum, 
S.W., 1985. 
Biochemistry 
of digestion. In: 
Comprehensive 
Physiol., 
Biochem. and 
Pharmacol. of 
Insects (Edited 
by Kerkut, 
G.A. and 
Gilbert, L.I.), v. 
4, pp. 279-311. 
Pergamon 
Press, Oxford. 

Lacks half-cystines 
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  Protease Name Source Method of 

Isolation 

Substrates 

Hydrolysed 

Enzyme 

assay 

conditions 

Inhibitors Activators Molecular 

Mass 

pI Optimal 

pH 

Optimal 

tempe-

rature 

Reference Other information 

9 Cysteine 
proteinase 

Anterior 
half of 
larval 
midgut 

Homogenization 
and 
centrifugation of 
peritrophic 
membrane 
contents 

BANA 100 mM 
succinate, pH 
5.0, 1 mM 
DTT, 1.5 
mM EDTA 

IAA, E- 64 
and leupeptin 
(which does 
not inhibit 
cathepsin H) 

Thiol 
compounds 
DTT, cysteine, 
glutathione, 
mercaptoethanol 

    5   Thie, N. M. R. 
and Houseman, 
J. G. (1990) 
Cysteine and 
serine 
proteolytic 
activities in 
larval midgut 
of yellow 
mealworm, 
Tenebrio 

molitorL. 
(Coleoptera: 
Tenebrionidae). 
Insect Biochem 
20: 741-744. 

First case where cysteine 
and serine digestive 
proteinases are found 
together in an insect 
midgut. Anterior midgut 
contained 71.3% of 
cysteine proteinase 
activity. 93.6% was 
found in the gut contents 
compared to the gut wall. 
Cathepsin B-like enzyme. 
Unaffected by PMSF, 
aprotinin, pepstatin. 

10 Cysteine 
proteinase 

Posterior 
third or 
whole 
larval 
midgut 

Chromatography 
on Superose 12 
(FPLC), pH 7.0 

BANA, 0.5 
mM 

  E-64, 5 µM EDTA + 
cysteine 

31,000   6.8   Terra W. R and 
Cristofoletti, P. 
T. (1996) 
Midgut 
proteinases in 
three divergent 
species of 
Coleoptera. 
Comp. 

Biochem. 

Physiol. 113B: 
725-730. 

Total cysteine proteinases 
activity predominates in 
anterior two thirds of the 
midgut, and trypsin and 
chymotrypsin - in 
posterior third. 
Hypothesis that cysteine 
proteinase undergoes 
autolysis at alkaline pH. 
T.molitor midgut lacks 
aspartic proteases.  

11 Cysteine 
proteinase 

Anterior 
two-
thirds or 
whole 
larval 
midgut 

Chromatography 
on Superose 12 
(FPLC), pH 7.0 
 

BANA, 0.5 
mM 

50 mM 
citrate-
sodium 
phosphate, 
pH 7.0, 3 
mM EDTA, 3 
mM cysteine 

E-64, 5 µM EDTA + 
cysteine 

51,000   6.8   Terra W. R and 
Cristofoletti, P. 
T. (1996) 
Midgut 
proteinases in 
three divergent 
species of 
Coleoptera. 
Comp. 

Biochem. 

Physiol. 113B: 
725-730. 

Total cysteine proteinases 
activity predominates in 
anterior two thirds of the 
midgut, and trypsin and 
chymotrypsin - in 
posterior third. 
Hypothesis that cysteine 
proteinase undergoes 
autolysis at alkaline pH. 
T.molitor midgut lacks 
aspartic proteases.  

 

Table of proteases identified from Tenebrio molitor (contd.) 
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  Protease Name Source Method of 

Isolation 

Substrates 

Hydrolysed 

Enzyme assay 

conditions 

Inhibitors Activators Molecular 

Mass 

pI Optimal 

pH 

Optimal 

tempe-

rature 

Reference Other information 

12 Endopeptidase α-
protease (EC 
3.4.21.18) 

Digestive 
tract of 
imago 

      PMSF, SBTI, 
LBTI 

  24,000       Zwilling, R. 
(1968) Zur 
Evolution der 
Endopeptidasen. 
IV. α- und β-
Protease aus 
Tenebrio 

molitor.Hoppe-

Seiler's Z 

Physiol Chem 
349: 326-332. 

Does not hydrolyze BAEE 
and ATEE. Is not inhibited 
by TLCK and TPCK. 

13 Endopeptidase 
β−protease 

Digestive 
tract of 
imago 

Gel filtration, 
paper 
electrophoresis, 
electrophoresis 

BAEE, poly-
lysine 

  SBTI, LBTI, 
BPTI, 
ovomucoid 

  60,000       Zwilling, R.et 
al. (1972) The 
evolution of 
endopeptidases. 
XIV. Non-
tryptic cleavage 
specificity of a 
BAEE-
hydrolyzing 
enzyme (β-
protease) from 
Tenebrio 

molitor. Comp 

Biochem 

Physiol 43B: 
419-424. 

Certain similarities to 
pancreatic serine proteases is 
‘missing link’, having 
changed by mutation certain 
properties of their catalytic 
site but conserved in primary 
structure. Features 
homologue to 
trypsin/chymotrypsin group 
of proteases. Lacks bovine 
trypsin cleavage specificity 
on the B-chain of oxidized 
insulin. 

14 Serine proteinase 
(trypsin-like) 

Posterior 
half of 
larval 
midgut 

Homogenization 
and centrifugation 
of peritrophic 
membrane 
contents 

BApNa 100 mM Tris-
HCl, pH 8.0, 1 
mM DTT, 3 
mM EDTA 

Aprotinin, 
SBTI, 
leupeptin, 
PMSF (5 mM); 
TLCK (0.5 
mM) - slightly 

Cysteine     8   Thie, N. M. R. 
and Houseman, 
J. G. (1990) 
Cysteine and 
serine 
proteolytic 
activities in 
larval midgut of 
yellow 
mealworm, 
Tenebrio 

molitorL. 
(Coleoptera: 
Tenebrionidae). 
Insect Biochem 
20: 741-744. 

First case where cysteine and 
serine (trypsin-like) digestive 
proteinases are found 
together in an insect midgut. 
Posterior midgut contained 
66.9% of trypsin-like activity. 
90.2% was found in the gut 
contents compared to the gut 
wall. Unaffected by pepstatin, 
IAA or E-64.  

 

Table of proteases identified from Tenebrio molitor (contd.) 
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  Protease Name Source Method of 

Isolation 

Substrates 

Hydrolysed 

Enzyme assay 

conditions 

Inhibitors Activators Molecular 

Mass 

pI Optimal 

pH 

Optimal 

tempe-

rature 

Reference Other information 

15 Trypsin Larval 
posterior 
midgut 

Differential 
centrifugation, 
calcium 
precipitation, 
partial ultrasound 
disruption 

BApNA, 0.8 mM 50 mM Tris-
HCl, pH 8.0 

  

          Ferriera, C. et 
al. (1990) 
Digestive 
enzymes 
associated with 
the glycocalyx, 
microvillar 
membranes and 
sesretory 
vesicles from 
midgut cells of 
Tenebrio 

molitor larvae. 
Insect Biochem 
20: 839-847. 

Soluble. Glycocalyx-
associated. More active in 
posterior midgut. 

16 Trypsin Posterior 
third of 
larval 
midgut 
contents 

Chromatography 
on Econo Pac High 
Q (Bio-Rad), pH 
7.0, Mono Q 
(FPLC), pH 9.0 

BApNA, 0.83 
mM 

100 mM Tris-
HCl, pH 7.5 

    25,000       Cristofoletti, 
P.T. et al. 
(2001) Apocrine 
secretion of 
amylase and 
exocytosis of 
trypsin along 
the midgut of 
Tenebrio 

molitor larvae. J 

of Insect 

Physiol 47: 143-
155. 

Pure preparation was isolated 
with a yield of 15% and 
specific activity 0.97 U/mg 
protein. Antibodies to 
purified trypsin showed only 
1 band in posterior midgut 
contents after Western 
blotting. Secreted by 
exocytosis in posterior third 
of midgut and this is efficient 
secretory mechanism in a 
water-secreting epithelium. 
Occurs as a precursor in 
posterior midgut sells.  

 

Table of proteases identified from Tenebrio molitor (contd.) 
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Table of proteases identified from Tenebrio molitor (contd.) 

 

 

  Protease Name Source Method of 

Isolation 

Substrates 

Hydrolysed 

Enzyme assay 

conditions 

Inhibitors Activators Molecular 

Mass 

pI Optimal 

pH 

Optimal 

tempe-

rature 

Reference Other information 

17 Trypsin Imago 
midgut 

Chromatography 
on DEAE-
cellulose, affinity 
chromatography 
on PABA-
Sepharose 

BApNA, TAME   TLCK, PABA 
(slow rate), 
BBI, CI 

  16 500 
(SDS-
PAGE), 
18400 
(Sephadex 
G-50) 

      Golan, R., 1981. 
Isolation, 
characterization 
and comparative 
study of 
proteolytic 
enzymes from 
the midguts of 
Tenebrio 

molitoradults 
and larvae as a 
basis of possible 
biological pest 
control with 
naturally 
occuring 
protease 
inhibitors from 
plant sources. 
M.Sc. thesis, 
Faculty of 
Agriculture, the 
Hebrew 
University, 
Rehovot, Israel. 
Quoted in 
Applebaum, 
S.W., 1985. 
Biochemistry of 
digestion. In: 
Comprehensive 
Physiol., 
Biochem. and 
Pharmacol. of 
Insects (Edited 
by Kerkut, G.A. 
and Gilbert, 
L.I.), v. 4, pp. 
279-311. 
Pergamon 
Press, Oxford 

8 tryptophan residues. No 
half-cystine or methionone. 
pI is higher than of larval 
trypsin. 
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Table of proteases identified from Tenebrio molitor (contd.) 

  Protease Name Source Method of 

Isolation 

Substrates 

Hydrolysed 

Enzyme assay 

conditions 

Inhibitors Activators Molecular 

Mass 

pI Optimal 

pH 

Optimal 

tempe-

rature 

Reference Other information 

18 Trypsin 
(Endopeptidase) 

Larval 
midgut 

Column 
chromatography 
on ECTEOLA-
cellulose and  CM-
cellulose  

Polylysine   DFP, BBI, 
SBTI, LBTI 

      6.3-6.5 37oC Applebaum 
S.W. et al. 
(1964) 
Comparative 
studies on 
proteolytic 
enzymes  of 
Tenebrio 

molitor L. 
Comp Biochem 

Physiol 11: 85-
103. 

Results substantiate presence 
of a trypsin-like enzyme in 
the digestive system of 
Tenebrio.  Proteolytic activity 
of midgut wall is distinct 
from that of midgut lumen in 
its resistance to inhibition by 
SBTI.  Effect of inhibitors 
depends on their relative 
concentration per enzyme and 
combination of pH, 
temperature and length of 
incubation. Significance of 
sulphydryl group for the 
integrity of proteolytic 
activity is due to effect of 
thiol compounds, such as 
cysteine and glutathione. 
SBTI-susceptible. Striking 
overall similarity between 
Tenebrio trypsin and bovine 
trypsin. 

19 Trypsin-like 
enzyme (TLE) 

Larval 
midgut 

Chromatography 
on DEAE-
cellulose, (pH 6.5, 
hold-up volume), 
rechromatography 

BApNA, 50 mM; 
TAME,15 mM; 
poly-L-lysine 
hydrobromide 

For BApNa 
140 mM Tris-
HCl, pH 8.0, 
25 mM CaCl2 

DFP, TLCK, 
BBI (Ki 

5.87*10-7), 
BPTI                   
(Ki 7.92*10-7), 
CI, SBTI 

  24 300 
(SDS-
PAGE)     
18 300 
(ultra-
centrfu-
gation) 

8 8 50oC Levinsky, H. et 
al. (1977) 
Isolation and 
characterization 
of a new 
trypsin-like 
enzyme from 
Tenebrio 

molitor L. 
larvae. Int J 

Peptide Protein 

Res 10: 252-
264. 

 A1%
1cm = 24.1 at 280 nm. No 

carbohydrates in the 
molecule. No tryptophan, 4 
half-cystine residues, N-
terminal isoleucine, C-
terminal asparagine or 
threonine. Km with BApNA 
0.93 mM, with TAME 0.08 
mM. Stable at neutral pH. 
Unstable in 4 M urea and at -
20o in 1 mM HCl. Unaffected 
by Ca2+ and by 10 mM DTT. 
Different in conformation 
from bovine trypsin, no 
common antigenic 
determinants. 
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Table of proteases identified from Tenebrio molitor (contd.) 

      

Protease Name Source Method of Isolation Substrates 

Hydrolysed

Enzyme assay 

conditions

Inhibitors Activators Molecular 

Mass

pI Optimal 

pH

Optimal 

tempe-

rature

Reference Other information

20 Trypsin-like 
proteinase 

Posterior  midgut ion-exchange 
chromatography on 
DEAE-Sephadex A-50 
and gel filtration on 
Superdex-75

Bz-Arg-pNA The Km values 
determined for Bz-
Arg-pNA and Bz-
Lys-pNA substrates 
were 0.04 and 0.09 
mM, respectively

PMSF, and specific 
trypsin inhibitor, 
TLCK

25.5 kD 7.4 8.5 55oC Tsybina, T.A.,  Dunaevsky, 
Y.E., Belozersky, M.A.,  
Zhuzhikov, D.P., Oppert, 
B. and Elpidina, E.N. 
(2005) Digestive 
proteinases of yellow 
mealworm (Tenebrio 

molitor ) larvae: 
purification and 
characterization of a trypsin-
like proteinase. 
Biochemistry  (Mosc.) 70: 
300-305.

The enzyme hydrolyzes 
peptide bonds formed by 
Arg or Lys residues in the 
P1 position with a 
preference for relatively 
long peptide substrates. 
The N-terminal amino 
acid sequence, 
IVGGSSISISSVPXQIX
LQY, shares 50-72% 
identity with other insect 
trypsin-like proteinases, 
and 44-50% identity to 
mammalian trypsins.
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Table of proteases identified from Tenebrio molitor (contd.) 

  

Protease Name Source Method of Isolation Substrates 

Hydrolysed

Enzyme assay 

conditions

Inhibitors Activators Molecular 

Mass

pI Optimal 

pH

Optimal 

tempe-

rature

Reference Other information

21 Chymotrypsin-like 
proteinase 

Posterior  midgut ion-exchange and gel 
filtration 
chromatography

SucAAPFpNA, 
SucAAPLpNA and 
GlpAALpNA 

Kinetic parameters 
of the enzymatic 
reaction 
demonstrated that 
the best substrate 
was SucAAPFpNA, 
with k(cat app) 36.5 
s(-1) and K(m) 1.59 
mM.

PMSF 23.0 kDa 8.4 9.5 51oC Elpidina, E.N., Tsybina, 
T.A.,  Dunaevsky, Y.E., 
Belozersky, M.A.,  
Zhuzhikov, D.P.  and 
Oppert, B. (2005) A 
chymotrypsin-like 
proteinase from the midgut 
of Tenebrio molitor  larvae. 
Biochimie  87: 771-779..

The activity of TmC1 
was reduced with 
sulfhydryl reagents. 
Several plant and insect 
proteinaceous proteinase 
inhibitors were active 
against the purified 
enzyme, the most 
effective being Kunitz 
soybean trypsin inhibitor 
(STI). The N-terminal 
sequence of the enzyme 
was 
IISGSAASKGQFPWQ, 
which was up to 67% 
similar to other insect 
chymotrypsin-like 
proteinases and 47% 
similar to mammalian 
chymotrypsin A. The 
amino acid composition 
of TmC1 differed 
significantly from 
previously isolated T. 
molitor enzymes.The 
proteinase displayed high 
stability at temperatures 
below 43 degrees C and 
in the pH range 6.5-11.2, 
which is inclusive of the 
pH of the posterior and 
middle midgut. 
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* Recently, Vinokurov et al. (2006a, in press) have described one cationic and three anionic proteinases in the posterior midgut 

of T. molitor that are responsible for trypsin-like activity, one cationic and four anionic proteinases with chymotrypsin-like activity. 

 

 

 

 

 

Abbreviations:     

ATEE - N-acetyl-L-tyrosine ethyl ester   

ATpNA - N-acetyl-L-tyrosine-para-nitroanilide   

BAEE - N-benzoyl-L-arginine ethyl ester   

BBI - Bowman-Birk soybean inhibitor   

BANA - N-alpha-benzoyl-L-arginine naphthylamide   

BApNA - N-alpha-benzoyl-DL-arginine-para-nitroanilide  

BPTI - bovine pancreatic trypsin inhibitor   
CHAPS - 3-[(cholamidopropyl)-dimethylammonio]-1-propan sulfonate 
 

DFP - diisopropylphosphofluoridate   

DTT - dithiothreitol     

E-64 - trans-epoxysuccinyl-L-leucyl-amido(4guanidino)butane  

ECTEOLA - anion exchange adsorbent epichlorhydrin triethanolamine 

IAA - Iodoacetamide    

LBTI - Lima bean trypsin inhibitor   

LpNA - L-leucine -para-nitroanilide   

PABA - para-aminobenz-amidine    

PMSF - phenylmethyl sulfonyl fluoride   

SBTI - soybean trypsin inhibitor     

TAME - tosyl-L-arginine-methyl-ester   

TLCK - N-tosyl-L-lysine chloromethyl ketone   

TPCK - N-tosyl-L-phenylalanine chloromethyl ketone  

ZGlyPhe - N-carbobenzoxy-glycyl-L-phenylalanine   
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CHAPTER 2 - BIOCHEMICAL STUDY OF THE DIGESTIVE 

PHYSIOLOGY OF THE YELLOW MEALWORM, TENEBRIO 

MOLITOR L. 

2.1. Abstract 

Tenebrio molitor is a univoltine stored product pest causing a significant economic loss 

in food production worldwide. Larvae of T. molitor have a unique digestive physiology and 

utilize a complex of digestive proteases, including those from the serine and cysteine classes. 

The pH environment in the larval midgut varies in different regions. The anterior midgut is 

acidic and optimal for cysteine protease activity; the posterior part is alkaline and optimal for 

serine protease activity. Using inhibitors of specific proteases, the activity of the various classes 

of proteases was measured in gut extracts from T. molitor larvae. Protease activity was 

susceptible to inhibition by SBTI, PMSF, TPCK, chymostatin, suggestive of serine proteases.  

Inhibition by E-64 in reducing buffers suggested the presence of cysteine proteases in the T. 

molitor midgut. These results define and establish reliable experimental conditions for future 

studies involving the regulatory and compensatory responses of T. molitor larvae to dietary 

protease inhibitors. The results have implications in improving the efficacy of biopesticides 

based on protease inhibitors for the control of coleopteran pests. 

Key words:  

Yellow mealworm, serine proteases, cysteine proteases, compensation, pH, enzyme 

localization  
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2.2. Introduction 

2.2.1. Proteases 

Food digestion is facilitated by a wide array of enzymes that break down the 

carbohydrate, fat and protein content of food into smaller units. Proteases are defined as those 

enzymes that catalyze the hydrolytic breakdown of proteins into amino acids or peptides.  

Proteases, enzymes that hydrolyze peptide bonds and disassemble proteins, have been isolated 

from plants, animals, bacteria and fungi. Proteases are extremely important, as more than 60% of 

the total commercial enzyme market is made up of proteases. The sub-subclasses of peptidases 

or proteases are the exopeptidases and the endopeptidases (Barrett, 1994). Proteases that 

hydrolyze amino acids sequentially from the ends of polypeptide chains are exopeptidases. 

Aminopeptidases are examples of proteases acting at a free N-terminus that liberate a single 

amino acid residue, a dipeptide or a tripeptide. They are classified on the basis of their 

dependence on metal ions  (usually Zn2+ or Mn2+) and substrate specificity. Carboxypeptidases 

are an example of exopeptidases acting at a free C-terminus liberating a single residue or a 

dipeptide. 

Endopeptidases (sometimes referred to as “proteinases”) act preferentially in the inner 

regions of peptide chains, away from the termini, as the presence of free α- amino or α- carboxyl 

groups has a negative effect on the activity of the enzyme. These include enzymes such as 

pepsin, trypsin or papain, and they catalyze the splitting of proteins into smaller peptide fractions 

and amino acids by a process known as proteolysis. There are four mechanistic classes of 

endopeptidases: aspartic, cysteine, serine, and amino (Barrett, 1986).  

Proteases have optimal activity in a specific pH environment or with specific reagents. 

Serine proteases have conserved sequences and regions around the residues that form the so-

called catalytic triad, those residues most directly involved in catalytic activity, and these include 

His57, Asp102 and Ser195 (chymotrypsin numbering) (Barrett and Rawlings, 1991). Serine 

proteases are inactivated irreversibly by diisopropylphosphofluoridate (DFP) or phenylmethyl 

sulfonyl fluoride (PMSF), or by ketones like L-1-chloro-3-(4 tosyl amido)-4 phenyl-2-butanone 

(TPCK) or L-1-chloro-3-[4-tosyl-amido]-7 amino-2 heptanone-hydrochloride (TLCK).  Trypsins 

are serine proteases that exist as an inactive precursor and are processed to a soluble form before 

being secreted into the lumen midgut. They preferentially cleave protein chains on the carboxyl 
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side of basic L-amino acids such as arginine or lysine.  Trypsin is specifically inhibited by TLCK 

interaction with a histidine residue in the active site (Shaw et al., 1965). Chymotrypsins 

preferentially cleave protein chains on the carboxyl side of aromatic amino acids (Terra and 

Ferriera, 1994). The enzyme is specifically inhibited by TPCK, which also interacts with a 

specific histidine. Cysteine proteases (EC 3.4.22) include cathepsins B, H, L and S and have 

striking conservation of structure around the Cys25 and His159 (papain numbering) residues that 

are directly involved in catalysis.  In insects, cysteine proteases are used in digestive processes 

(Rawlings and Barrett, 1994), but also are found in several other tissues and play other roles 

(Kanost and Clarke, 2005; Yamamoto et al., 1994). Cysteine proteases are processed by 

removing the amino-terminal fragment to produce the active enzyme. The pro-region, or the 

amino-terminal region, plays important roles not only as inhibitors of enzyme activity but also in 

the correct folding of the newly synthesized protein, to protect it against denaturing effects in 

sudden changes in pH conditions (Oliviera et al., 2003). Cathepsin L-like enzymes and cathepsin 

B-like enzymes are subfamilies of the papain family. The best-known animal cysteine protease is 

cathepsin B (EC 3.4.22.1.) (Barrett 1977a). Cysteine proteases are inhibited by mercurial 

compounds. Cystatins, cysteine protease inhibitors, include proteins that inhibit the activity of 

papain and related cysteine proteases (cathepsin B, H and L, ficin, Bromelain).  The knowledge 

of the properties of a protease are important, especially since most organisms produce a number 

of different proteases, and it is essential that their activities be distinguished to understand 

biological activity (North, 1982). Thie and Houseman (1990) suggested that coleopteran species 

could be subdivided into at least three different groups, based on digestive proteolysis by either 

serine or cysteine proteases, or a combination of both. They reported T. molitor as the first case 

where both serine and cysteine proteases are found together in an insect midgut; however, we 

now know that other coleopterans have this type of digestion, although the relative activities 

vary. Protein digestion in T. molitor occurs partly in the lumen and partly at the cell surface of 

the posterior midgut (Ferriera et al., 1990). Proteolytic enzymes are the most abundant in the 

lumen of the T. molitor larval midgut (Applebaum et al., 1964). The names of the classes of 

proteases reflect the key catalytic moiety (an amino acid) participating in the cleavage of peptide 

bonds (Wolfson and Murdock, 1990). In practice, the mechanistic class to which a protease 

belongs is based on the following in vitro characteristics: 1. pH range over which it is maximally 

active; 2. sensitivity to various inhibitors; 3. ability to hydrolyze specific proteins or peptides; 
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and 4. similarity to well-characterized proteases (North, 1982; Barrett, 1986; Wagner, 1986). The 

susceptibility of midgut homogenates to inhibition can add information to the prediction of the 

type of protease as suggested by the pH optimum curves (Wolfson and Murdock, 1990). pH 

optima and inhibitor assays can be determined in the presence of a reducing agent that usually 

enhance the activity of cysteine proteases. The pH of gut contents is one of the important internal 

environmental properties that affects digestive enzymes (Terra and Ferriera, 1994). 

2.2.2. Rationale 

Insects are excellent models for studying gut function, as their feeding habits have 

allowed them to adapt to almost all kinds of habitats. This understanding has been used in the 

development of transgenic plants to control phytophagous insects. The digestive proteases of 

insects catalyze the release of free amino acids from dietary protein and thereby provide a supply 

of nutrients essential for normal growth and development (Wolfson and Murdock, 1990). As 

pointed out by Wolfson and Murdock, information on insect digestive proteolytic activity in a 

given insect species must exist, before the possible importance of protease inhibitors, either 

induced or constitutive, is considered a factor in aberrant growth patterns. Characterizing a 

protease by mechanistic class establishes experimental conditions to study properties of the 

enzyme that is unique to its biological function (Barrett, 1986). A study of gut proteases and the 

biochemical environment along the midgut is crucial to planning further molecular studies of 

spatial protease gene expression. The pH of the gut environment is one of the physiological 

conditions that determines the activity of digestive enzymes. Terra and Ferriera (1994) stated that 

the organization of the digestive process depends on compartmentalization of digestive enzymes 

and on midgut fluid fluxes that are responsible for the translocation of enzymes and products of 

digestion. Attempts were made to separate the complex of proteolytic enzymes into individual 

components as a prerequisite to the elucidation of mechanism of proteolytic digestion. 

Applebaum et al., 1964 identified three distinct proteolytic components based on selective 

inhibiton by specific inhibitors. The effectiveness of protease inhibitors as insecticides depends 

on the affinity or specificity of an inhibitor to the main gut proteases of the insect (Burgess et al., 

1991; Gatehouse et al., 1993; McManus et al., 1994; Jongsma et al, 1995). Therefore, a 

comprehensive study of the insect digestive proteases and their mechanistic classes, and the 

effect of protease inhibitors is essential. 
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The purpose of this study is to understand the biochemical aspect of gut physiology of 

larval T. molitor by testing several parameters. Preliminary in vitro experiments have 

standardized conditions for biochemical assays, including microplate assays and pH curves, 

inhibitor assays, activity blots and zymograms. Results revealed the overall proteolytic activities 

in T. molitor larval midguts (both anterior and posterior) and the biochemical nature and 

properties of the gut environment.  

2.3. Materials and Methods  

2.3.1. Isolation of Gut Enzymes   

Stock cultures of the yellow mealworm, Tenebrio molitor, were collected from eastern 

Kansas in 1970 and have since been reared at a relative humidity of 60-70% at 25°C under 

photoregime conditions of a 16:8 (L:D) photoperiod. Insects were transferred from a wheat flour 

diet to a coarse oatmeal diet two days before biochemical studies. They were then allowed to 

feed overnight on a wet diet. Fully grown larvae of each sex weighing 1.131 ± 0.025 g (n=20) 

were used. Actively feeding late instar larvae were immobilized on ice, after which they were 

dissected by excising the anterior and posterior ends and by pulling out the gut in cold 342 mM 

NaCl. Only samples from actively feeding larvae (i.e. those with full guts) were taken. The 

foregut was about 3%, midgut 67%, and the hindgut 30% of the entire gut in length. The whole 

midgut was removed and divided into anterior (AM) and posterior (PM) sections of identical 

length by cutting midway between the most anterior region and the insertion of the Malpighian 

tubules. Since the size of the midgut and the biochemical characteristic necessitated 

homogenization of subsamples, the supernatants of the subsamples were pooled, mixed and 

divided into aliquots prior to freezing. The tissue was then manually homogenized with a pestle, 

and samples were pooled, vortexed, centrifuged in a Hermle Z230 MA centrifuge at 15,000 x g 

for 5 min, and the supernatant was either used immediately or stored at –20°C for proteolytic 

assays. Protease activity in each midgut was diluted to be within the linear range of the assay. 

 2.3.2. Microplate Assay-pH Curve 

A pH curve based on the microplate assay method of Oppert et al. (1996) was used to 

evaluate the hydrolysis of substrate and effects of different inhibitors on the crude gut extract of 

T. molitor.  For substrate analysis, 2 µl of the T. molitor gut extract containing 0.18 gut 
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equivalents of AM and 0.30 gut equivalents of PM were diluted into buffers ranging from acidic 

to basic, using a universal buffering system (Frugoni, 1957).  The universal buffers of increasing 

pH within a range of 1-10 were made using varying volumes of stock solution (54 ml H3PO4, 

45.8 ml H3OAc, 49.6 g H3BO3), 2N NaOH, H2O and 0.01M KCl.  In a black 96-well 

microplate, 88 µl of buffer with 10% distilled water (non-reducing medium) and 2 µl of the gut 

extract was added to first 4 rows (A-D) with pH increasing from left to right. In rows E-H 88 µl 

of buffer with 10% 5mM L-cysteine (reducing medium) and 2 µl of the gut extract was added in 

the same ascending order of pH. Ten µl of the substrate was added to rows A-H and the plate 

was covered. The process of adding the substrate was done in dim light, as the fluorescently 

labeled casein (BODIPY TR-X) substrate is photosensitive. In reducing buffers, the covered tray 

was pre-incubated at 37°C, for at least 15 min before adding the substrate. Fluorescence of dye-

labeled peptides was measured at time intervals of 30, 60, 120, 180 and 240 min. Total 

proteolytic activity was measured using fluorescently labeled casein (BODIPY TR-X casein, 

Molecular Probes’ Enz ChekTM Protease Assay Kits, Eugene, OR) to detect protease activity. 

Protease-catalyzed hydrolysis releases highly fluorescent BODIPY TR-X dye-labeled peptides. 

The accompanying increase in fluorescence was measured with a microplate reader and was 

proportional to protease activity. A 10 µg/ml working solution of the BODIPY-caesin was 

prepared. BODIPY TR-X has excitation and emission maxima of approximately 590±10 nm and 

645±10 nm respectively. The instrument was a Fluoroskan Ascent FL microplate reader (Thermo 

Electron Corporation, Milford, MA) with a highly focused light beam for fluorometric 

measurements. The output data was copied onto and analyzed in a Microsoft Excel (Redmon, 

WA) spreadsheet. There were four replicates for each pH curve (with and without L-cysteine) 

and the microplate assay was duplicated at two different times using a new pool of guts.  

2.3.3. pH profile Comparison of T. molitor Larvae Reared on Wheat Flour and Wheat 

Germ 

To examine the effect of diet on differences in enzymatic activity, midgut homogenates 

of guts that were fed on wheat flour and wheat germ, were used in a microplate assay. The 

proteolytic activity of gut extracts of insects that fed on wheat flour and germ in the presence and 

absence of 5mM L-cysteine was measured in four replicates using a buffer with pH 8.5, and 

fluorescence was measured at 6 time points ranging from 0 time to 4 h after incubation at 37°C.  
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2.3.4. Effect of Variability of Gut Samples on Total Proteolytic Activity 

To examine the effect of temperature and storage conditions of midgut extracts on their 

enzymatic activity, microplate assays were done using freshly dissected guts and frozen guts. 

The experiment was repeated using one set of pooled AM extracts and one set of pooled PM 

samples, stored at -80°C. Results of these assays were compared to those using freshly dissected 

guts. In a similar experiment, guts that were freshly dissected or frozen stored in either distilled 

water or physiological buffered saline were used in a microplate assay.  

2.3.5. Inhibitor Assays 

The effect of various protease inhibitors on gut proteolytic activity was determined. For 

inhibitor assays, midgut extracts were incubated at 37ºC, with or without 5 mM L-cysteine, and 

with increasing dilutions of inhibitor (and a no inhibitor control) for 15 min in universal buffer 

(pH 8.5) in reducing or non-reducing media (Frugoni, 1957). Protease inhibitors were as follows 

(Appendix A): aprotinin, chymostatin, E-64 (trans-epoxysuccinyl-l-leucylamido [4-guanidino] 

butane), leupeptin, pepstatin, phenylmethyl sulfonyl fluoride (PMSF), TLCK, (L-1-Chloro-3-[4-

tosyl-amido]-7 amino-2 heptanone-hydrochloride); TPCK, (L-1-Chloro-3-(4 tosyl amido)-4 

phenyl-2-butanone), soybean Bowman-Birk trypsin-chymotrypsin inhibitor (SBTI) (Boehringer 

Mannheim, Indianapolis, IN and Sigma Chemical Co., St Louis, MO).  Means were separated 

using LSD and were analyzed statistically using PROC GLM (SAS Institute, 1985). 

2.3.6. Activity Blots  

An activity blot assay of the crude gut extract was performed using a method adapted 

from Ohlsson et al. (1985) as described by Oppert and Kramer, 1998.  Briefly, soluble extracts 

from the entire gut were subjected to sodium dodecyl sulphate (SDS) polyacrylamide gel 

electrophoresis (Laemlii, 1970).  Following electrophoresis and electroblotting, nitrocellulose 

blots were incubated with a substrate solution (a p-nitroanilide-conjugated substrate, N-succinyl-

ala-ala-pro-phe-p-nitroanilide (SAAPFpNA) at a concentration of 0.5 mg/ml in 0.1 M Tris, pH 

8.1, 0.02M CaCl2) by placing blots in an Econoblot (LabLogix, Belmont, CA) tray and layering 

5 ml of substrate solution directly over the blot. Blots were then covered with an Econoblot 

plastic sheet and incubated at 37°C until a faint yellow color appeared (15-30 min) depending 

upon the amount of protease activity in the sample. Liberated nitroanilide was diazotized for 

visualization by subsequent incubations for 5 min each in 0.1% sodium nitrite in 1 M HCl, 0.5% 
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ammonium sulphamate in 1 M HCl, and 0.05% N- (1-naphthyl)-ethylenediamine in 47.5% 

ethanol. Membranes were then placed on a plastic Gel-bond sheet (FMC, Rockland, ME) in heat-

sealed bags at -20°C. All substrates and chemicals were obtained from Sigma Chemical Co. (St. 

Louis, MO). 

2.3.7. Zymograms 

In zymogram gels, proteases are characterized as clear bands in a stained protein 

background, where the protease has digested the substrate. NOVEX Zymogram gels (ZBC 

Caesin, Invitrogen, Carlsbad, CA) were used to detect proteases. T. molitor larval gut extracts 

were separated in a 4-16% Tris-Glycine gel containing blue-stained beta-casein in a 12-well 

format. There were four replicates of three lanes each with the first lane loaded with molecular 

marker, the second lane with 4 µl and the third well with 10 µl of the mixture of sample and 

sample buffer (2x). The gel was run with 1x Tris-Glycine SDS running buffer at 125 V for 90 

min. After electrophoresis, the gel was transferred to Triton-X 100 (1:10 dilution) with gentle 

agitation at room temperature. The gel was then cut into four strips/sets with 3 lanes each, and 

strips were incubated at 37°C, each with a different treatment. Set 1 was fixed with 45% 

methanol, 10% acetic acid and stained with 0.5% Coomassie in 50% methanol and 10% acetic 

acid. Set 2 was incubated with universal buffer, pH 9.2, to evaluate serine protease activity. Set 3 

was incubated in universal buffer, pH 6.2, with 5mM L-cysteine to evaluate cysteine protease 

activity. Set 4 was incubated in universal buffer, pH 9.2, with 25 µl of the yellow mealworm gut 

extract to evaluate serine protease inhibitory activity from the gut extract. 

2.4. Results 

2.4.1. Microplate Assay 

Hydrolysis of the substrate, fluorescently labeled casein (BODIPY TR-X casein), by the 

crude gut extract of T. molitor was used to determine the optimal pH for activity of enzymes in 

the AM and PM.  For AM proteases, there were two distinct activities, one with optimal activity 

in acidic buffers, with an optimum at pH 5.6, and another small increase in activity in basic 

buffers, around pH 7.9 (Figure 2.1).  Activity also was examined in reducing buffers, because 

cysteine proteases have optimal activity under reducing conditions. However, there was no 

significant activation of activity for proteases from the AM in reducing buffers.  This lack of 
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activation may have been due to the instability of cysteine proteases under the isolation 

conditions for gut extracts.   

For proteases from the PM, a minor peak of activity was observed in acidic buffers, with 

an optimum at pH 5.6, and major peak of activity in alkaline buffers (Figure 2.2).  The optimum 

pH for activity of PM proteases in the alkaline region was 7.9 in reducing buffers and 9.3 in 

nonreducing buffers.  This shift in pH optimum may have been due to the increase of trypsin 

activity in reducing buffers, as has been previously reported for T. molitor trypsin (Elpidina et 

al., 2005).  

2.4.2. pH Profile Comparison of T. molitor Larvae Reared on Wheat Flour and Wheat 

Germ 

The total proteolytic activity of midgut extracts was measured and estimated in larvae 

that were fed two different diets, wheat flour (Figure 2.3A) or germ (Figure 2.3B), differing in 

oil content, fiber, vitamins, and minerals (Slavin et al., 1999). Proteolytic activity in buffers with 

reducing reagent was not different that that in nonreducing buffer for either extract. There also 

was no difference in total proteolytic activity of gut extracts from larvae reared on wheat flour or 

wheat germ. 

 

2.4.3. Effect of Storage of Gut Samples on Total Proteolytic Activity 

The proteolytic activity of freshly dissected gut extracts was compared with the 

proteolytic activity of guts extracts stored at -80°C over a variable period of time to determine if 

proteolytic activity decreases during storage. At acidic pH 4.0, the total proteolytic activity of 

freshly dissected larval gut extracts doubled in the AM and at alkaline pH 8.0, total protelolytic 

activity increased ~4-fold in the PM when compared to the proteolytic activity of guts stored at -

80°C (Figures 2.4, 2.5). Results of a similar experiment indicated that when guts were dissected 

in water and immediately used for activity assays instead of first freezing at -80°C, maximal 

activity of enzymes was retained (Figure 2.6).  

2.4.4.  Inhibitor Assays 

A microplate assay was used to test the efficacy of different inhibitors on the crude gut 

extract of T. molitor and determine which of the inhibitors from various classes was most 
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effective in inhibiting protease activity of the T. molitor midgut. In nonreducing buffer, effective 

inhibition of general caesinolytic activity by T. molitor extracts was observed with aprotinin, 

chymostatin, PMSF, TLCK and SBTI. (Figure 2.7). However, in reducing buffer, E-64, 

aprotinin, chymostatin, PMSF, TPCK, and TLCK were effective inhibitors of general 

caesinolytic activity (Figure 2.8). The results from inhibitor assays showed effective inhibitors of 

general caesinolytic activity to be aprotinin, chymostatin, PMSF, TLCK and SBTI. 

2.4.5.  Activity Blots 

An activity blot was used to visualize the development of protease activity in the T. 

molitor midgut extract when incubated with specific substrates. Hydrolysis of BAρNA was 

nondetectable (data not shown).  However, SAAPFρNA was hydrolyzed by at least six different 

chymotrypsin-like activities, with approximate molecular masses of 20, 25, 50, 90, 100 and 210 

kDa (numbered 1-6, respectively, in Figure 2.9). 

2.4.6.  Zymograms 

A zymogram, a strip or band of electrophoretic medium containing a stained protein, was 

used to observe the pattern of proteases after their separation by electrophoresis. A zymogram 

analysis of the gut extracts from the AM and PM demonstrated differences in the relative number 

and intensity of caesinolytic enzymes (Figure 2.10). At least eight different proteolytic activities 

were resolved in the AM and activities 2-8 were found in the PM. Activities 3, 7 and 8 were 

prominent in the AM and activities 3, 4, 7 and 8 were prominent in the PM. Inhibitors specific 

for selected cathepsins had no effect on T. molitor gut activity. All caseinolytic activities, except 

# 4 (seen as a white band in lane b of AM), were reduced when E-64 was added to the buffer. 

2.5. Discussion 

 This study identified several biochemical parameters useful in conducting further in vitro 

T. molitor gut-protease inhibitor studies. Zymogram assays revealed a diversity of digestive 

protease forms. Although some digestive proteases from T. molitor were described and identified 

by researchers in the past, a complete representation of all the digestive proteases in the midgut 

was lacking until recently. Results of a study by Vinokurov et al. (2006) have revealed a 

complex enzyme diversity through a combined use of general proteinaceous and a set of specific 

substrates, together with inhibitor analyses.  
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The susceptibility to inhibition by midgut homogenates was in agreement with the type of 

proteases suggested by the pH optimum curves. In the inhibitor assays, the whole midgut was 

used when, in fact, other studies have used AM and PM separately. However, the presence of 

especially trypsin and chymotrypsin serine proteases was indicated by inhibition with SBTI, 

PMSF, TLCK, chymostatin and aprotinin. Studies by Tsybina et al., 2005 and Elpidina et al., 

2005 involved purification of a trypsin-like protease and a chymotrypsin-like protease from the 

T. molitor midgut.  It should be noted that in reducing buffer, which enhances the effect of 

cysteine proteases, there was increased inhibition by E-64 and TPCK as compared to inhibition 

in a non-reducing buffer. Effective inhibition by PMSF, aprotinin, chymostatin, and TLCK also 

was observed in reducing medium. SBTI, on the other hand, inhibited less effectively in reducing 

medium as compared to inhibition in non-reducing buffers. This observation supported the 

hypothesis that the Cucujiformia ancestor was proposed to be a beetle adapted to ingest seeds 

rich in naturally occurring proteinase inhibitors by producing a cysteine protease for food 

digestion, instead of the common insect serine proteases (Terra and Cristofoletti, 1996).  The pH 

of the buffer used for the microplate inhibitor assay was 8.5. However, the inhibitors may have 

not been stable in this pH. As cautioned by Barrett (1985), data presented for partial inhibition is 

difficult to evaluate, as it is incomplete and a time-dependant process with simple kinetics. Based 

on these data, the inhibitors for in in vitro and in vivo inhibitor assays should be selected with 

care.   

The spatial distribution of the digestive proteases, such as cysteine proteases in the AM 

and serine proteases in the PM, was observed in our microplate assays with AM and PM extracts. 

The pH profile of the AM and PM was similar to an earlier study of the spatial distribution of 

two different pH environments on the midgut (Thie and Houseman, 1990). The evaluation of pH 

optimal activity can be a useful characteristic, although it cannot be used for the diagnostic 

characteristic of the different classes of proteases (Wolfson and Murdock, 1990). The increased 

hydrolysis by freshly dissected gut extracts demonstrated that the midguts of T. molitor larvae 

should be used immediately for in vitro enzymatic studies. Tissues kept frozen at –80°C may 

preserve genetic material intact but loose proteolytic activity. Furthermore, freshly dissected guts 

stored in distilled water had maximal enzymatic activity as compared to freshly dissected gut 

stored in physiological buffered saline and frozen guts. These results suggest that dissecting guts 
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into water and using freshly dissected guts placed at 4°C are the best isolation conditions for 

protease assays.  

In summary, these results suggested that the larvae of T. molitor rely on a diversity of 

serine proteases.  Future studies are needed to identify the genes encoding these proteases in vivo 

and the regulatory expression of these proteases in response to ingested protease inhibitors. The 

enzymology of the insect digestive tract in relation to initial stages of digestion of large food 

polymers (starch or protein) reflects the biochemical adaptation of these post harvest insects to 

their preferred food (Baker, 1986). This basic biological data of insect digestive physiology can 

be made available and included in the computer models of population dynamics of stored-grain 

pest management.                              
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Figure 2.1. Hydrolysis of fluorescent-casein by enzymes in the anterior midgut (AM) 

extract of T. molitor larvae, in buffers containing or lacking L-cysteine. 

R
e

la
ti
v
e

 F
lu

o
re

s
c
e

n
c
e

 

 



 57

 

Figure 2.2. Hydrolysis of fluorescent-casein by enzymes in the posterior (PM) midgut 

extract of T. molitor larvae, in buffers containing or lacking L-cysteine. 
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Figure 2.3. Hydrolysis of fluorescent casein by enzymes in the midgut extract of T. molitor 

larvae reared on (a) wheat flour (b) wheat germ in buffers containing or lacking L-cysteine. 
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Figure 2.4. Hydrolysis of fluorescent-casein by enzymes in the anterior midgut (AM) 

extracts of guts (a) stored at -80°°°°C (b) freshly dissected guts of T. molitor larvae, in buffers 

containing L-cysteine. 
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Figure 2.5. Hydrolysis of fluorescent casein by enzymes in the posterior midgut (PM) 

extracts of guts (a) stored at -80°°°°C (b) freshly dissected guts of T. molitor larvae, in buffers 

containing L-cysteine. 

 

 

 

 

 

Figure 2.6. Hydrolysis of fluorescent-casein by enzymes in T. molitor gut extracts of freshly 

dissected guts or guts stored at -80°°°°C that were in water or in saline buffer 
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Figure 2.7. A microplate inhibitor assay of T. molitor midgut incubated with inhibitors and 

enzyme activity measured with flurorescent-casein, in non-reducing buffers. 

*Means followed by the same letter are not significantly different (P>0.05; LSD). Grouping 
analysis was done statistically using PROC GLM (SAS Institute 1985) and means were separated using 
LSD. 
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Figure 2.8. A microplate inhibitor assay of T. molitor midgut extracts incubated with 

inhibitors and enzyme activity measured with fluorescent-casein, in reducing buffers. 

* Means followed by the same letter are not significantly different (P>0.05; LSD). Grouping 

analysis was done statistically using PROC GLM (SAS Institute, 1985) and means were separated using 

LSD.  
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Figure 2.9. Activity blot incubated with SAAPFpNA showing six different chymotrypsin-

like activities (numbered 1-6) in T. molitor midgut extract. 
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Figure 2.10. Zymogram Gel picture showing T. molitor midgut protease  (AM & PM) 

activities (1-8) when inhibited with five different inhibitors (lanes a-e). 
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CHAPTER 3 - TRANSCRIPTOME ANALYSIS OF DIGESTIVE 

PROTEASES FROM THE YELLOW MEALWORM, TENEBRIO 

MOLITOR L. (COLEOPTERA: TENEBRIONIDAE) 

3.1. Abstract 

As part of the study of the digestive transcriptome of the yellow mealworm, Tenebrio 

molitor Linnaeus, sequences from randomly picked clones from midgut cDNA libraries of 

various larval stages were analyzed.  Of a total of 1,528 sequences, 92 sequences encoded 

potential proteases expressed in the midgut of T. molitor, and clones of these 92 were further 

sequenced to obtain 50 full-length cDNA sequences.  Protease sequences were grouped into 

functional classes, and sequences were selected for further analysis.  Northern blot analysis of 

representative sequences demonstrated the differential expression profile of selected transcripts 

across five developmental stages of T. molitor, suggesting an active regulation of digestive 

proteases.  These sequences provide information on digestive proteases in coleopteran insects as 

a basis to study the response of coleopteran larvae to external stimuli and to evaluate regulatory 

features of the response. 
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3.2. Introduction 

Proteases have important functions in all living systems. Insect digestive proteases 

catalyze the breakdown of protein during digestion and provide amino acids for growth and 

development.  Therefore, proteases are attractive candidates for the development of new pest 

control proteins based on synthetic or natural inhibitors.  Proteases include exopeptidases, such 

as amino- and carboxypeptidases, and endopeptidases, also referred to as proteinases, and are 

grouped as serine, cysteine, metallo, or aspartic, as defined by the active site and catalytic 

mechanism (Neurath, 1982).  Protease gene families have been subdivided into clans based on 

sequence similarity and cataloged in the MEROPS database (Rawlings et al., 2006). 

Genome studies are providing information on the complexity and diversity of protease 

genes in insects.  In a comparison of genome sequences, there were 305 serine protease 

(chymotrypsin or trypsin family) genes predicted in Anopheles gambiae, 199-210 in Drosophila 

melanogaster, and 118 in Homo sapiens, but only 13 in Caenorhabditis elegans and one in 

Saacharomyces cerevisae (Rubin et al., 2000; International Human Genome Sequencing 

Consortium, 2001; Holt et al., 2002; Zdobnov et al., 2002; Ross et al., 2003).  Multigene 

families of trypsins were found in Lucilia cuprina and Haematobia irritans exigua (Casu et al., 

1994; Elvin et al., 1993).  In L. cuprina, 125-220 different serine protease genes were expressed 

(Elvin et al., 1994). A cluster of seven trypsin and two chymotrypsin genes in Anopheles 

gambiae was induced by feeding (Müller et al., 1993). Transcriptome analysis of the insect 

midgut has provided further functional and physiological information related to digestion (Pedra 

et al., 2003; Campbell et al., 2005; Xu et al., 2005).   

Twenty-eight different serine proteinase genes in Helicoverpa armigera were 

differentially expressed in response to dietary inhibitors (Bown et al, 1997). Inclusion of soybean 

trypsin inhibitor in the diet stimulated an initial up-regulation of protease genes and a longer 

down-regulation of inhibitor-sensitive protease genes (Bown et al., 2004). The adaptation of 

insects to protease inhibitors suggests that specific transcriptional or translational regulation of 

protease genes enables feeding on plants that have protease inhibitor defenses.   

The yellow mealworm, Tenebrio molitor, is a univoltine stored-product pest found in 

stored grain products, causing economic loss in food production worldwide. The earliest studies 

on insect larval digestive proteases were of T. molitor (Applebaum et al., 1964). Larvae of T. 
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molitor have a digestive physiology that incorporates a complex of digestive proteases, including 

those from serine and cysteine protease classes, operating in a midgut with a sharp pH gradient 

(Terra et al., 1985). Cysteine protease activity was compartmentalized to the anterior region of 

the larval midgut of T. molitor, whereas serine protease activity was found in the posterior region 

(Thie and Houseman, 1990; Terra and Ferreira, 1994). Multiple digestive protease activities have 

been reported in other coleopteran pests (Oppert et al., 1993, 2003, 2005; Bouchard et al., 2003; 

Zhu-Salzman et al., 2003).  A combination of biochemical studies on proteolytic activity in the 

midgut of larval T. molitor has identified at least 20 proteases, although some may not represent 

unique enzymes, as the methodology of study was not uniform. Of these proteases, four are 

aminopeptidases, two are carboxypeptidases, six are cysteine proteases, and the rest are serine 

proteases (Applebaum et al., 1964; Zwilling, 1968; Zwilling et al., 1972; Levinsky et al., 1977; 

Garty, 1979; Golan, 1981; Urieli, 1982; Ferriera et al., 1990; Thie and Houseman, 1990; Terra 

and Cristofoletti, 1996; Cristofoletti and Terra, 1999, 2000; Cristofoletti et al., 2005; Elpidina et 

al., 2005; Tsybina et al., 2005).  A recent comprehensive biochemical analysis suggested that at 

least 13 different protease activities are expressed simultaneously in T. molitor larvae under 

normal dietary conditions, including six cysteine proteases, four trypsin-like, and five 

chymotrypsin-like proteases (Vinokurov et al., 2006a, 2006b).   Recent studies have provided the 

N- terminal sequences of the major trypsin and chymotrypsin digestive proteases in this group  

(Tsybina et al., 2005; Elpidina et al., 2005).  Five procathepsin L-like proteases from a cDNA 

library included the predicted sequence of a major luminal proenzyme (Cristofoletti et al., 2005). 

A comprehensive analysis of the cDNAs encoding proteases in the midgut of T. molitor 

larvae was conducted by a transcriptomic analysis of the regulation of insect proteases in the 

coleopteran insect.  The structural motifs and expression patterns of representative genes 

encoding proteases from different classes were demonstrated and compared in five 

developmental stages of T. molitor.  

3.3. Materials and Methods 

3.3.1. Insect Rearing and Dissection   

T. molitor larvae used in this research were derived from a laboratory colony.  Insects 

were reared at a relative humidity of 60-70% at 25°C. Fully grown late instar larvae of both 

sexes, weighing 1.13 ± 0.03 g (n=15), were used for AM and PM midgut cDNA library 
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construction and isolation of digestive trypsin and chymotrypsin.  “Small” (0.89 ± 0.24 mg, 

n=27) and “middle” (168 mg ± 0.25, n=10) instar larvae were used for the construction of small 

and middle cDNA libraries (S and L, respectively). Larvae from three different instars, pupae 

and adults were used for RNA isolation for Northern blots and qPCR. 

Actively feeding larvae were immobilized on ice and were dissected by excising the 

anterior and posterior ends, removing the gut with forceps, and placing the gut into a solution of 

DEPC-water. The entire midgut was divided into AM and PM sections of identical length by 

cutting midway between the most anterior region and the insertion of the Malpighian tubules. 

The contents of the gut were gently forced out with a pair of forceps, and the tissue was rinsed 

twice in DEPC-water, dried on filter paper and immediately transferred into TRI Reagent™ 

(Molecular Research Center, Inc., Cincinnati, OH). 

3.3.2. cDNA Library Construction and Sequencing  

Total cellular RNA was extracted from dissected gut tissue using TRI reagent, according 

to the procedure provided by the manufacturer.  Four cDNA libraries (AM, PM, S and L) were 

constructed from RNA samples using a SMART™ cDNA library construction kit, which 

synthesizes cDNA using oligo-dT primers (Clontech, Palo Alto, CA), according to the protocol 

provided by the manufacturer, with one modification. Instead of the original phage vector, PCR 

fragments were cloned directly into a plasmid using a TOPO TA cloning kit (Invitrogen, 

Carlsbad, CA).  Approximately 500 clones from each of the four libraries were picked randomly, 

and unidirectional sequences were obtained commercially (MegaBACE 4000, Amersham 

Biosciences, Piscataway, NJ, Rexagen DNA Sequencing Service, Seattle, WA; ABI Prism™ 

3730xl, SeqWright DNA Techonology Services, Houston, TX).  Universal primers M13 F (-20) 

and M13 R were used for further sequencing of predicted protease clones.  Specific synthetic 

primers were used to confirm the sequences from both directions.  Some sequence analysis also 

was performed using an ABI 3700 DNA sequencer at the DNA Sequencing and Genotyping 

Facility, Dept. of Plant Pathology, Kansas State University, Manhattan, KS.  

3.3.3. Computer-based Sequence Analysis  

Vector sequences were trimmed using Sequencher (Gene Codes Corporation, Ann Arbor, 

MI).  Sequences were grouped into clusters and redundant cDNA sequences were identified and 

analyzed using a customized BLASTN program that produced outputs with sequence assembly 
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parameters similar to those of the CAP3 assembly program (Huang and Madan, 1999). 

Sequences also were analyzed using the BLASTX algorithm 

(http://www.ncbi.nlm.nih.gov/BLAST).  Sequences were grouped by their similarity, based on 

predicted open reading frame (ORF), to sequences in the database at the National Center for 

Biotechnology Information (http://www.ncbi.nlm.nih.gov/; Bethesda, MD).  Full-length 

sequences were obtained with synthetic primers for clones encoding nonredundant proteases.   

Secretion signal peptides were predicted using PSORT or SignalP 

(http://psort.nibb.ac.jp/form2.html; http://www.cbs.dtu.dk/services/SignalP). The ‘Compute 

pI/Mw tool’ (http://us.expasy.org/tools/pi_tool.html) was used for molecular mass calculations 

and pI prediction of mature proteins. The ExPASy Proteomics tools on the website of the Swiss 

Institute of Bioinformatics (http://www.expasy.ch/tools) were used to process data of deduced 

protein sequences. Alignments were made with MULTALIN (PBIL, Lyon, France) or 

CLUSTALW in pairwise comparisons (gap weight=8, gap length weight=2; Thompson et al., 

1994) was used in pairwise comparison. 

3.3.4. Isolation and Purification of T. molitor Digestive Trypsin and Chymotrypsin 

Isolation and purification of digestive trypsin (TmT1) and chymotrypsin (TmC1) was 

performed as described earlier (Tsybina et al., 2005 and Elpidina et al., 2005, respectively). Two 

hundred PM of late instar larvae were homogenized in 0.75% NaCl and clarified with 

centrifugation.  The extract was dialyzed against 20 mM potassium sodium phosphate buffer, pH 

6.9, containing 0.02% sodium azide.  Dialyzed extracts were subjected to batch chromatography 

on DEAE-Sephadex A-50 in the same buffer, followed by gel filtration FPLC on a Superdex-75 

column in the same buffer.  Aliquots of resolved and purified enzymes were analyzed by 

MALDI-TOF MS or subjected to SDS-PAGE according to Laemmli (1970), followed by in-gel 

tryptic hydrolysis. 

3.3.5. In Gel Tryptic Hydrolysis of Purified Trypsin and Chymotrypsin 

Tryptic peptides of purified digestive trypsin and chymotrypsin were obtained after 

hydrolysis of proteins in a 0.15% Coomassie Brilliant Blue R-250 stained gel. A 1 mm 2 gel 

piece was excised and washed twice in 150 µl of 40% (v/v) acetonitrile in 0.1 M NH4HCO3 for 

20 min at 56 °С.  The gel was further dehydrated in 150 µl of the same buffer, was dried, and 

was supplemented with 3 µl of modified sequencing-grade trypsin (Promega, Madison, WI, 
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USA) dissolved in 0.05 М NH4HCO3 to a final concentration of 10 µg/ml.  The hydrolysis was 

performed for 15 h at 37 °С and was stopped by the addition of 5 µl of 0.1% of trifluoroacetic 

acid in a 10% solution (v/v) of acetonitrile and water, followed by thorough mixing.  The gel 

solution was used for MALDI-TOF MS and MS/MS analysis of peptides. 

3.3.6. MALDI-TOF MS and MS/MS Analysis 

Aliquots (1 ml) of the sample were mixed on a steel target with an equal volume of 2,5-

dihydroxybenzoic acid (Sigma-Aldrich, St. Louis, MO) solution (10 mg/ml in 30% 

acetonitrile/0.5% trifluoroacetic acid), and the droplet was left to dry at room temperature.  Mass 

spectra were recorded on an Ultraflex MALDI-TOF-TOF mass spectrometer (Bruker Daltonik, 

Germany) equipped with a 337 nm laser with positive ion detection. Each mass spectrum was 

obtained as the sum of a minimum of 200 laser shots. Fragment ion spectra were generated by 

laser-induced dissociation slightly accelerated by low-energy collision-induced dissociation 

using helium as a collision gas. The MH+ molecular ions of the tryptic digest were measured in 

reflector mode, and the accuracy of mass peak measurement was 0.02%.  Mass spectra of the 

intact proteins were obtained in linear mode.  Mass peak accuracy of the measurement of intact 

protein and MS/MS fragmentation of peptides was 0.05 %.  Correspondence of the masses and 

MS/MS peptide fragments to predicted protein peptides was manually interpreted with GPMAW 

4.04 (Lighthouse Data, Denmark). 

3.3.7. RNA Isolation and Northern Blot Analysis 

Total cellular RNA from five different developmental stages (first-instar, mid-instar, late-

instar larvae, pupae and adults) of T. molitor was extracted as previously described. For Northern 

blots, equal amounts (5 µg) of total RNA were separated in a 1.2% agarose gel containing 

formaldehyde and were transferred to a nylon membrane.  The membrane was baked at 80°C for 

2 h to fix RNA onto the membrane. The membranes were then hybridized separately to 20 

individual cDNA probes, each representing a different cluster of full-length proteases.  The 

cDNA probes were labeled with 32P-dCTP using a random labeling kit from Stratagene (La Jolla, 

CA). Hybridization was carried out overnight at 42°C in a plastic bag containing 15 ml 

hybridization solution (10% dextran sulfate/1% SDS/1 M NaCl, pH 8.0). After hybridization, the 

membranes were washed twice with 2×SSC at room temperature for 30 min, twice with 2×SSC 

plus 1%SDS at 65 °C for 30 min, and twice with 0.1×SSC plus 1%SDS at room temperature for 
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30 min. The membranes were exposed to Kodak SR-5 X-ray film overnight.  The expression of 

mRNA in developmental stages of T. molitor larvae was measured as band intensity per unit 

(NucleoTech, San Mateo, CA). 

3.3.8. Phylogenetic Analysis 

To compare the relationships among proteases isolated from the T. molitor midgut and 

those of other species, phylogenetic trees were constructed.  For serine proteases, trypsin from D. 

melanogaster and human trypsin HsPRSS1 were included as outgroups.  Sequences were aligned 

using the Alignment Explorer/CLUSTAL tool in Molecular Evolutionary Genetics Analysis 

(MEGA 3.1). MEGA 2.1 was used to generate a phylogenetic tree calculated based on the 

distance/neighbor-joining method.  Bootstrap values were obtained with 1000 replications. 

3.4. Results 

3.4.1. Composition of T. molitor Transcripts 

cDNA libraries were constructed using mRNA from the anterior (AM) and posterior 

(PM) midgut of late-instar larvae, and entire midguts of early-(S) and mid-(L) instar T. molitor 

larvae.  Sequences were obtained for a total of 301, 373, 272, and 330 clones selected randomly 

from the AM, PM, S, and L libraries, respectively.  Each sequence was compared to the non-

redundant GenBank database using the BLASTX algorithm. The threshold expected value (E-

value) was set to 10, meaning that 10 such matches are expected to be found merely by chance 

alone (Karlin and Altschul, 1990). Of these, 26% (332) of the sequences had no significant  

match (E>10), and 67% encoded proteins that were not proteases (Figure 3.1).  Seven percent of 

the cDNA sequences (92 total) encoded distinct sequences for putative midgut proteases.  These 

sequences were grouped by similarity to proteases belonging to one of the four classes.  Of these 

sequences, 73% encoded serine proteases, 13% encoded cysteine proteases, and 14% encoded 

metalloproteases.  None of the sequences were similar to aspartic proteases.   

3.4.2. Distribution of Protease Transcripts in T. molitor 

Thirty-seven cDNAs predicted to encode serine proteases were identified in the PM 

cDNA library, whereas only 18 serine protease-encoding cDNAs were found in the AM cDNA 

library (Figure 3.2).  In contrast, 10 sequences encoding cysteine proteases were from the AM 
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cDNA library and only two were from the PM cDNA library.  A similar trend was observed for 

metalloproteases, with more sequences obtained from the AM than from the PM cDNA library.  

3.4.3. Classification of Protease Transcripts 

3.4.3.1. Serine Proteases 

A total of 50 full-length, nonredundant cDNAs encoding proteases from the midgut 

libraries were obtained.  To characterize proteases further by their specificity, residues were 

identified that determine primary specificity (Rawlings and Barrett, 1993; Perona and Craik, 

1995; Ross et al., 2003; Jiang et al., 2005).    

All of the predicted serine protease (SP) sequences were aligned, and their similarity to 

the S1 serine peptidase family, clan SA, was compared with conserved sequence motifs TAAHC, 

DIAL and GDSGGP, containing the conserved catalytic residues His57, Asp102, and Ser195 

(chymotrypsin numbering, Rawlings and Barrett, 1993).  All sequences contained a typical 

secretion signal peptide for digestive serine proteases, and trypsin activation was predicted for all 

sequences, with an Arg and mostly Ile (and in a few cases, Val) bridging the activation site 

(Figure 3.3A).  Therefore, the hydrophobic residue at the N-terminus of the mature enzymes, 

predicted to hydrogen bond to the Asp194 residue preceding the active site Ser (Kraut, 1971), 

was conserved in all of the sequences.  In addition, the molecular masses of the predicted 

proenzymes and mature peptides were within the range of other digestive serine proteases, and 

each sequence contained a single catalytic domain (Table 3.1).  Because these cDNAs were from 

midgut libraries, the enzymes they encode are predicted to participate in digestive processes.  

Nine clones, including AM1-01, AM3-26, AM4-47, AM4-49, PM4-08, PM2-57, PM4-

54, PM4-63, and PM5-90, encoded proteins with a substitution of Gln for the catalytic His57, 

and with Gly, Val, or Leu substitutions for the active site serine (Ser195) residue (Table 3.1).  

Therefore, these proteins were predicted to be catalytically inactive and were classified as serine 

proteinase homologs (SPHs; Ross et al., 2003).  PM1-93 also was a SPH, with the catalytic 

His57 substituted by Ser, and the active site Ser changed to Val.  Clone PM4-36 had very 

different active site resides, VILEDP, and the sequence was truncated one amino acid residue 

past this sequence.  Clone AM1-62 lacked two of the three critical residues of the specificity 

pocket due to a truncated sequence.  Therefore, PM4-36 and AM1-62 were categorized as SPHs.  
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In most of the T. molitor serine protease sequences, six cysteine residues, which 

participate in three disulphide bonds, were found at positions conserved in S1 family proteases 

(Figure 3.3A; Kraut, 1971).   The exceptions were AM1-11, PM4-06, and S3-80, each with one 

additional cysteine residue, and all were predicted to be functional serine proteases.  PM4-06 is 

closely related to a purified chymotrypsin from T. molitor larval PM (Elpidina et al., 2005).  

Sequences missing one conserved cysteine were AM1-62, PM4-36, PM4-60, and PM2-57, and 

all but PM4-60 were predicted to be SPH on the basis of deletions or mutations.  It is not known 

whether the missing cysteine residue affects the activity of PM4-60, tentatively classified as a 

serine protease. Although 78% of the serine proteases in D. melanogaster contained the TAAHC 

region (Ross et al., 2003), only 54% of the T. molitor sequences had this motif, with 25% 

containing TAGHC, and the rest containing TSGHC or TSAHC.  Those sequences lacking 

conservation in the Asp194 position (AM1-21, PM5-80 and PM4-36) were all SPHs.  One 

sequence, L3-34, lacked the conserved Asp194 but retained the active site serine.  This sequence 

was classified as a serine protease, but the Asp194 to Gly substitution may disrupt the normal 

tertiary structure needed for activity. 

Overall, there was less conservation in the DIAL motif than in the other conserved 

sequences.  The DIAL motif was found in 37% of SPs from D. melanogaster (Ross et al., 2003), 

but in only one of the 24 T. molitor serine protease sequences (PM4-06, chymotrypsin).  The 

remainder of the serine proteases contained the motifs DISV (all of the trypsins), DVAL, DVGL, 

DVGM, DIGM, or DIGL, and these same motifs also have been found in D. melanogaster serine 

protease and SPHs.  The exception was clone L4-25, with an Asn in the position of Asp102, a 

substitution that had been demonstrated to reduce enzyme activity 104-fold (Craik et al., 1987).   

Similar to those of D. melanogaster, most T. molitor S1 family proteases contained the 

active site Ser residue (85 and 79%, respectively; Ross et al., 2003).  However, five T. molitor 

S1 family proteases (L4-24, S3-72, PM2-01, PM4-31, and PM4-60) had a Thr substitution for 

the active site Ser.  The Ser to Thr change in evolution would have occurred with only a single 

base change, and it has been hypothesized that an intermediate peptidase may have contained 

Thr as a nucleophile (Barrett et al., 1998).  In D. melanogaster, there are five potential sequences 

(AAF58664, 53414, 22154, 49207 and 44895) with either the GDTGGP or GDTGSP motif 

(http://www.ento.okstate.edu/labs/jiang/table1.htm).  Serine proteases from L. cuprina contain 

the Ser to Thr substitution, but the activity of these proteases was not documented (Elvin et al., 
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1994).  We have tentatively classified T.  molitor sequences as serine protease analogs, but their 

functional activity needs to be evaluated.   

Residues in the S1 binding pocket and two loops that connect the walls of the binding 

pocket determine substrate specificity (Hedstrom et al., 1992).  Trypsins have a conserved 

Asp189, whereas chymotrypsins have a Ser at that position.  The functional predictions for T. 

molitor sequences correlate to these conserved amino acids, inasmuch as only the T. molitor 

trypsins in cluster 1 (Table 3.1) have this conserved Asp (Figure 3.3A).  Correspondingly, the T. 

molitor chymotrypsin (PM4-06) has a Ser at that position.  AM4-49 was the only other sequence 

with a Ser in the same position, but it was predicted to be a SPH because of the lack of 

conservation in other critical residues.  The amino acids in loop1 and loop2 of the T. molitor 

serine proteases have considerable variation within this group and also with corresponding 

sequences in mammalian enzymes.  Thus, it is difficult to predict substrate specificity. 

With the exception of AM1-21, the mature enzyme form of the serine proteases and 

SPHs ranged from 20,847 to 29,178 daltons (Table 3.1).  There was a wide range in the pI of 

these enzymes, from 4.17 to 8.54.  Serine proteases and SPH from the AM had acidic pI values, 

from 4.17 to 6.91; those in the PM grouped into either acidic (4.21-5.08) or basic (8.26-8.92) 

proteins.   

3.4.3.2. Cysteine Proteases 

An alignment of cathepsin B-like proteinases from T. molitor was made with cathepsin B 

from Diabrotica virgifera virgifera (DvvcathB; Bown et al., 2004) and Araneus ventricosus 

(AvcathB), all belonging to the C1 cysteine peptidase family, clan CA (Figure 3.3B). T. molitor 

sequences (AM4-18 and AM3-87) had signal peptides and activation sites, an indication that 

they are secreted proteins.  In addition, AM3-87 had the conserved dyad residues Cys25 and 

His159 (papain numbering), and Gln19 and Asn/Asp175 residues that stabilize the molecule 

(Rawlings and Barrett, 1993), but AM4-18 lacked the conserved His159 as well as the residues 

C-terminal to the conserved Asn175. However, AM4-18 contained the two His residues 

(His110/111) in the occluding loop region of cathepsin B that blocks the C-terminal end of the 

active site cleft and causes the enzyme to act as a dipeptidase (Musil et al., 1991).  AM3-87 

lacked the conserved His residues and most of the occluding loop.  Therefore, AM3-87 may be 

related to primitive forms of cathepsin B, such as those found in protozoa (Ward et al., 1997).  

There were 12 Cys residues in AM3-87, similar to typical cathepsin B proteases, but there were 
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18 Cys residues in AM4-18.  There was one potential glycoslyation site in AM4-18 (at residue 

297), but none in AM3-87. 

Cathepsin L proteases belong to the same family and clan as cathepsin B and contain the 

same active site residues (Rawlings and Barrett, 1993).  T. molitor cathepsin L sequences were 

aligned with another T. molitor cathepsin L (TmcathL, Cristofoletti et al., 2005; Figure 3.3C).  

All T. molitor cathepsin L enzymes had the conserved residues Cys25, His159, Gln19 and 

Asn/Asp175, and all contained the conserved trio of cysteine residues found in mammalian 

homologs, Cys22/63, Cys56/95, and Cys153/Cys200.  AM4-72 had 13 Cys residue, whereas 

AM3-32 and AM4-22 had only 8 residues.  There were no N-glycosylation sites in any of the T. 

molitor cathepsin L sequences.  AM3-32 and AM4-22 were most similar to TmcathL, only 

differing in the N-terminal regions.  Although AM4-72 was similar to these cathepsin L 

sequences, the sequence was highly divergent in the N-terminus, and lacked the typical 

activation site as well as signal peptide.   

3.4.3.3. Metalloproteases 

Predicted carboxypeptidase sequences from T. molitor were aligned with Aedes aegypti 

carboxypeptidase A (AeCPA), members of the clan MC and family M14 metallopeptidase 

family, with an HXXE zinc-binding motif (Figure 3.3D).  As with all other midgut protease 

cDNAs, a signal peptide and an activation site were identified.  The numbering of residues 

important for enzyme specificity is from Bos taurus carboxypeptidase A (BtCPA- Accession 

#POO730; Titani et al., 1975). The residues in the catalytic zinc-binding site included His69, 

Glu72 and His196.  Residues involved in catalytic binding and cleavage include Arg71, Arg127, 

Arg145, X255 and Glu270. 

3.4.4. Comparison of Sequences from Predicted Serine Proteases with Purified TmT1 

and TmC1 

An N-terminal sequence was obtained from the major trypsin, TmT1, from the T. molitor 

larval midgut (Tsybina et al., 2005).  This N-terminal sequence was identical to the predicted N-

termini of the mature enzymes of PM1-83, PM1-75, PM 2-70, PM1-95 and PM2-03.  The N-

terminus of the major T. molitor larval midgut chymotrypsin, TmC1 (Elpidina et al., 2005), 

corresponded to only one predicted mature protease, PM 4-06.  For further comparison of the 

corresponding sequences, mass spectra of tryptic peptides of each purified protease were 
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obtained (data not shown).  The most prominent peaks in the mass range of 700-3000 kDa from 

both spectra were further subjected to MS/MS fragmentation to obtain the partial sequence 

needed to verify their correspondence to predicted cDNA sequences of mature enzymes.  

The masses of four peptides from the tryptic digest of TmT1 and masses of their MS/MS 

fragments were identical to those of predicted peptides 92-102, 103-112, 236-249, and 250-258 

from sequences PM1-75, PM2-70, and PM1-95 (Figure 3.4A). The predicted C-terminal peptides 

from PM1-83 and PM2-03 differed from that of TmT1.  However, PM1-75, PM2-70, and PM1-

95 had similar predicted amino acid sequences, molecular masses, and pI values that also were 

similar to those calculated for TmT1 (Tsybina et al., 2005).  Therefore, TmT1 may be the protein 

product of PM1-75, PM2-70, or PM1-95.  Alternatively, the purified protein may represent a 

mixture of trypsin isoforms. The differences in amino acid sequences of PM1-75, PM2-70, and 

PM1-95 are located in long tryptic peptides and were not resolved by the mass spectral analysis. 

Therefore, cDNAs PM1-75, PM2-70, and PM1-95 have been tentatively identified as “tmt1a, 

tmt1b and tmt1c”, respectively (Figure 3.3A).  

The TmC1 tryptic digest consisted of four peptide masses (Figure 3.4B). The MS/MS of 

the tryptic peptides from TmC1 were identical to 112-118, 150-171, 253-260, and the C-terminal 

266-274 predicted peptides of PM4-06 (Figure 3.4B).  Therefore, PM4-06 was labeled “tmc1a” 

and was predicted to be the gene encoding the previously purified protein TmC1. 

3.4.5. Phylogenetic Analysis of Protease cDNAs from T. molitor 

Phylogenetic analyses of T. molitor serine protease and homolog sequences demonstrated 

distinct groups (Figure 3.5A).  All sequences in the branch PM 1-75, PM1-83, PM1-95, PM2-70, 

and PM2-03 were predicted to be trypsins, homologous to the biochemically characterized 

digestive trypsin TmT1 (Tsybina et al., 2005).  This hypothesis was supported by the presence of 

conserved residues critical for specificity, DGG (Table 3.1).  PM4-06 was predicted to be 

chymotrypsin due to similarities to TmC1 (Elpidina et al., 2005) and because of the presence of 

conserved residues in the specificity pocket, SGS (Table 3.1).  The lineage of the chymotrypsin 

cDNA, tmc1a, grouped with SPHs from AM and PM (AM4-49, PM5-90, AM1-01, and AM3-

26), all with His57 ⇒ Glu and Ser195 ⇒ Gly substitutions.  The distinction between trypsin and 

chymotrypsin presumably resides between these two groups.     
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A prediction for the phylogeny of T. molitor cathepsin B is presented in Figure 3.4B.  T. 

molitor sequence AM4-18 was most related to D. virgifera cathepsin B, while AM3-87 had 

similarity to cathepsin B from D. virgifera as well as that of A. ventricosus.    

AM4-72 is related in sequence to the previously identified cathepsin L in T. molitor 

(Cristofoletti et al., 2005; Figure 3.4C).  AM3-32 and AM4-22, from the same linkage, also were 

in this group. 

The bootstrap consensus phylogenetic tree prediction for the T. molitor carboxypeptidase 

A sequences revealed strong support for the presence of two closely related groups within the 

same cluster (91-100% identity).  With the A. aegypti carboxypeptidase A as the outgroup, the 

first group was AM 1-72, and the second group consisted of two subgroups, with sequences AM 

1-30 in the first subgroup, and AM1-60, AM 1-02, AM 2-60, AM 2-51, L4-60 and AM 3-75 in 

the second subgroup. 

A preliminary comparison of all the sequences in the T. molitor gut database with 

Tribolium castaneum sequences in the EST databases 

(http://www.bioinformatics.ksu.edu/BeetleBase) revealed that 45.2% of the total T. molitor gut 

sequences have homologs in T. castaneum (data not shown). Further comparison of T. molitor 

sequences indicated that 29.2% of T. molitor sequences have homologs in the D. melanogaster 

genome (http://flybase.bio.indiana.edu/). 

3.4.6. Expression Analyses 

To investigate the expression patterns of individual proteases and homologs 

representative of grouped sequences in five developmental stages (first-, mid-, and late-instar 

larva, pupa, and adult) of T. molitor, we examined mRNA levels by Northern analysis (Figure 

3.6, Table 3.3).  The seventeen individual protease transcripts chosen for analysis had variable 

expression patterns.  The expression patterns of individual representative proteases across 

clusters/groups indicated no correlation with the phylogenetic relationships between and among 

clusters.  Among the serine proteases, only transcript L3-34 was expressed in the pupal (non-

feeding) stage.  Transcripts encoding PM2-70 (tmt1b), PM4-06 (tmc1a), AM2-68, PM5-80, 

PM4-54, PM1-93, and PM3-37 shared a similar expression pattern: expression levels were 

highest in the first-instar larvae, decreased slightly in subsequent larval stages, not expressed in 

pupae, and a moderate level of expression was observed in adults.  Transcripts encoding AM 1-
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11, AM 1-62 and L3-34 were only expressed in certain developmental stages.  Other transcripts 

had variable expression patterns:  There was a high level of AM 1-11 expression in first and late-

instar larvae as well as in the adults; AM 1-62 was expressed only in late-instar larvae; whereas 

L3-34 was only expressed in first instar larvae, pupae, and adults. Their transient expression in 

specific developmental stages suggested a role of developmental regulation for these proteases.  

Transcripts encoding PM4-86, PM5-90, and AM4-47 were primarily expressed in first instar 

larvae, whereas those encoding L3-34 and PM2-01 exhibited a relatively high level of expression 

in first instar larvae as well as a moderate level of expression in adults. Among the three cysteine 

proteases analyzed, AM 3-87, a predicted cathepsin B, was expressed in all developmental stages 

including the pupa.  AM 4-18 (cathepsin B) and AM 3-32, a predicted cathepsin L, were 

expressed at increased levels in first-instar larvae and adults and at moderate levels in other 

larval instars.  

3.5. Discussion 

Our results demonstrate that the majority of cysteine protease cDNAs were isolated from 

the anterior midgut cDNA library, and most serine protease transcripts were from the posterior 

midgut library.  These data provide molecular evidence in support of previous observations that 

digestion in T. molitor larvae is compartmentalized (Thie and Houseman, 1990; Terra and 

Cristofoletti, 1996; Vinokurov et al., 2006a).  Trypsin and chymotrypsin transcripts from the PM 

were related to previously purified and biochemically characterized proteases from the PM, 

TmT1 and TmC1 (Tsybina et al., 2005, Elpidina et al., 2005). Three closely related transcripts, 

tmt1a, tmt1b and tmt1c, may constitute individually or simultaneously the major digestive 

trypsin(s) TmT1, responsible for 84% of the total trypsin activity in the PM.  One transcript, 

tmc1a, was predicted to encode a protein with an N-terminus and MS/MS identical to TmC1.  

TmC1 represents as much as 42% of the total chymotrypsin activity in the PM, and other 

chymotrypsins evidently were not represented in randomly selected clones from the cDNA 

library.  

There were no cDNAs corresponding to the AM “heavy” trypsins, with apparent 

molecular masses of 59 kDa, observed in our previous biochemical studies (Vinokurov et al., 

2006b).  The lack of cDNAs encoding heavy trypsins supports the hypothesis that these enzymes 

are complexes resulting from the association of trypsin monomers under certain gut conditions 
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(Wagner et al., 2002; Brito et al., 2001).  However, it is still possible that transcripts for these 

enzymes may be of low abundance.  Alternatively, these heavy trypsins may have sequences that 

are not similar to known proteases. 

Our study complements others involving cDNAs encoding cathepsin L enzymes as well 

as the biochemical characterizations of these enzymes in T. molitor (Cristofoletti et al., 2005; 

Vinokurov et al., 2006b).  All cathepsin transcripts were localized to the AM and correspond to 

biochemical characteristics of cysteine proteinases in the AM (Vinokurov et al., 2006a).   

This is the first report of carboxypeptidase A cDNA transcripts in T. molitor although 

several studies have developed a molecular characterization of digestive carboxypeptidase A in 

other insect midguts (Ramos et al., 1993; Bown et al., 1998; Edwards et al., 2000; Bown and 

Gatehouse, 2004).  All cDNAs for carboxypeptidases were from the AM, which suggests that 

these enzymes are localized to the AM in T. molitor larvae.  Further work is necessary to fully 

characterize T. molitor carboxypeptidases, and to determine if these enzymes are involved in 

digestion, or if they function in immunity or detoxification. 

The sequences of T. molitor midgut proteases, in conjunction with protein 

characterization of enzymes, provide the basis for studies of the nature of the compensatory 

response of T. molitor to dietary protease inhibitors and other antinutritional compounds. The 

data obtained from the Northern blot analysis revealed the overall maximal expression of 

protease transcripts in the first-instar larvae of T. molitor when compared with other 

developmental stages.  The first instar represents the most active phase of growth for T. molitor 

larvae. 

Our results emphasize the importance of serine and cysteine proteases in the growth, 

physiology and development of T. molitor.  Gene expression patterns in response to protease 

inhibitors have been studied in various lepidopteran insects (Bown et al., 1997, 2004; Gatehouse 

et al., 1997; Chougule et al., 2005) and in some coleopterans (Michaud et al., 1995; Zhu-

Salzman et al., 2003).  Therefore, information on the protease profile in the midgut of T. molitor, 

which utilizes primarily two classes of proteases for digestion under normal dietary conditions, 

will significantly enhance the development of new targets for coleopteran pest control based on 

protease inhibitors. 

 

  



 80

 

3.6. References 

Applebaum, S.W., Birk, Y., Harpaz, I. and Bondi, A. (1964) Comparative studies on 

proteolytic enzymes of Tenebrio molitor L. Comp.  Biochem. Physiol. 11: 85-103. 

Barrett, A. J., Rawlings, N. D., and Woessner, J. F. (1998) Introduction:  family S1 of 

trypsin (clan SA).  In Handbook of Proteolytic Enzymes (Barrett, A. J., Rawlings, N. D, and 

Woessner, J. F., eds.), Academic Press, New York, pp. 3-12.  

Bouchard, E., Cloutier, C. and Michaud, D. (2003) Oryzacystatin I expressed in 

transgenic potato induces digestive compensation in an insect natural predator via its herbivorous 

prey feeding on the plant.  Mol. Ecol. 12:2439-2446. 

Bown,  D.P., Wilkinson H.S. and Gatehouse J.A. (1997)  Differentially regulated 

inhibitor-insensitive and insensitive protease genes from the phytophagous insect pest, 

Helicoverpa armigera, are members of complex multigene families.  Insect Biochem. Mol. Biol. 

27:625-638. 

Bown,  D.P., Wilkinson H.S. and Gatehouse J.A.(1998) Midgut carboxypeptidase from 

Helicoverpa armigera (Lepidoptera: Noctuidae) larvae: enzyme characterisation, cDNA cloning 

and expression. Insect Biochem. Mol. Biol. 28:739-749. 

Bown,  D.P., Wilkinson H.S. and Gatehouse J.A. (2004)  Regulation of expression of 

genes encoding digestive proteases in the gut of a polyphagous lepidopteran larva in response to 

dietary protease inhibitors.  Physiolog. Entomol. 29:278-290. 

Bown, D.P. and Gatehouse, J.A. (2004) Characterization of a digestive carboxypeptidase 

from the insect pest corn earworm (Helicoverpa armigera) with novel specificity towards C-

terminal glutamate residues. Eur. J. Biochem. 271:2000-2011.  

Bown, D.P., Wilkinson, H.S., Jongsma, M.A. and Gatehouse, J.A. (2004) 

Characterisation of cysteine proteinases responsible for digestive proteolysis in guts of larval 

western corn rootworm (Diabrotica virgifera) by expression in the yeast Pichia pastoris. Insect 

Biochem. Mol. Biol. 34:305-320.  

Brito, L.O., Lopes, A.R., Parra, J.R.P., Terra, W.R. and Silva-Filho, M.C. (2001) 

Adaptation of tobacco budworm Heloithis virescens to proteinase inhibitors may be mediated by 

the synthesis of new proteinases. Comp. Biochem. Physiol., 128B:365-375. 



 81

Campbell, C.L, Vandyke, K.A., Letchworth, G.J., Drolet, B.S., Hanekamp T. and Wilson, 

W.C. (2005) Midgut and salivary gland transcriptomes of the arbovirus vector Culicoides 

sonorensis (Diptera: Ceratopogonidae). Insect Mol. Biol. 14:121-136. 

Casu, R. E., Jarmey, J. M., Elvin, C. M. and Eisemann, C. H. (1994). Isolation of a 

trypsin-like serine protease gene family from the sheep blowfly Lucilia cuprina. Insect Mol. Biol. 

3:159-170. 

Chougule, N.P., Giri, A.P., Sainani, M.N. and Gupta, V.S. (2005) Gene expression 

patterns of Helicoverpa armigera gut proteases. Insect Biochem. Mol. Biol. 35:355-367. 

Craik, C.S., Roczniak, S., Largman, C. and Rutter, W.J. (1987) The catalytic role of the 

active site aspartic acid in serine proteases. Science 228: 291-297. 

Cristofoletti, P.T. and Terra, W.R. (1999) Specificity, anchoring, and subsites in the 

active center of a microvillar aminopeptidase purified from Tenebrio molitor (Coleoptera) 

midgut cells. Insect Biochem. Mol. Biol. 29:807-819. 

Cristofoletti, P.T. and Terra, W.R. (2000) The role of amino acid residues in the active 

site of a midgut microvillar aminopeptidase from the beetle Tenebrio molitor. Biochim. Biophys. 

Acta 1479:185-195. 

Cristofoletti, P.T., Ribeiro, A.F. and Terra, W.R. (2005) The cathepsin L-like proteinases 

from the midgut of Tenebrio molitor larvae: Sequence, properties, immunocytochemical 

localization and function. Insect Biochem. Mol. Biol. 35: 883-901.  

Edwards, M.J., Moskalyk, L.A., Donelly-Doman, M., Vlaskova, M., Noriega, F.G., 

Walker, V.K. and Jacobs-Lorena M. (2000) Characterization of a carboxypeptidase A gene from 

the mosquito, Aedes aegypti.  Insect Mol. Biol. 9: 33-38. 

Elpidina, E.N., Tsybina, T.A., Dunaevsky, Y.E., Belozersky M.A., Zhuzhikov, D.P. and 

Oppert, B. (2005) A chymotrypsin-like proteinase from the midgut of Tenebrio molitor larvae. 

Biochimie  87: 771-779. 

Elvin, C. M., Whan, V. and Riddles, P.W. (1993) A family of serine protease genes 

expressed in adult buffalo fly Haematobia irritans exigua. Mol. Gen. Genet. 240:132-139. 

Elvin, C. M., Vuocolo, T., Smith, W. J., Eisemann, C. H. and Riddles, P.W. (1994) An 

estimate of the number of serine protease genes expressed in sheep blowfly larvae (Lucilia 

cuprina).     Insect Mol. Biol. 3:105-115. 



 82

Ferriera C., Bellinello, G.L., Ribeiro, A.F.and W. R. Terra. (1990) Digestive enzymes 

associated with glycocalyx, microvillar membranes and secretory vesicles from midgut cells of 

Tenebrio molitor larvae. Insect Biochem. 20: 839-847. 

Franco, O.L., Dos Santos, R.C., Batista, J.A.N., Mendes, A.C.M., De Araujo, M.A.M., 

Monnerat, R.G., Grossa-se-Sa, M.F. and De Freitas, S.M. (2003) Effects of black-eyed 

trypsin/chymotrypsin inhibitor on the proteolytic activity and on the development on 

Anthonomus grandis. Phytochemistry 63: 343-349. 

Garty, N. (1979) Isolation and characterization of a chymotrypsin-like enzyme from 

Tenebrio molitor larvae. M.Sc. Thesis, Faculty of Agriculture, The Hebrew University, Rehovot, 

Israel. 

Gatehouse, L.N., Shannon, A.L., Burgess, E.P.J. and Christeller, J.T. (1997) 

Characterization of major midgut proteinase cDNAs from Helicoverpa armigera larvae and 

changes in gene expression in response to four proteinase inhibitors in the diet. Insect Biochem. 

Mol. Biol. 27:929-944. 

Girard, C., Le-Mateyar, M., Monade-Bottino, M., Pham-Delegue, M.H. and Jouanin, L. 

(1998) High level of resistance to proteinase inhibitors may be conferred by proteolytic cleavage 

in beetle larvae. Insect Biochem. Mol. Biol. 28:229-237. 

Golan, R. (1981). Isolation, characterization and comparative study of proteolytic 

enzymes from the midguts of Tenebrio molitor adults and larvae as a basis of possible biological 

pest control with naturally occurring protease inhibitors from plant sources. M.Sc. Thesis, 

Faculty of Agriculture, The Hebrew University, Rehovot, Israel. 

Hedstrom L., Szilagyi, L. and Rutter, W. J.  (1992) Converting trypsin to chymotrypsin:  

The role of surface loops.  Science 255: 1249-1253. 

Hilder, V.A., Gatehouse A.M.R., Sheerman, S.E., Barker R.F. and Boulter D. (1987) A 

novel mechanism of insect resistance engineered from tobacco. Nature 330:160-163. 

Holt, R. A., Subramanian, G. M., Halpern, A., Sutton, G. G., Charlab, R., Nusskern, D. 

R., Wincker, P., Clark, A. G., Ribeiro, J. M. Wides, R., et al. (2002) The genome sequence of the 

malaria mosquito Anopheles gambiae.  Science  298: 129-149. 

Huang, X. and Madan, A. (1999) CAP3: A DNA Sequence Assembly Program. Genome 

Res. 9:868-877. 



 83

International Human Genome Sequencing Consortium. (2001) Initial sequencing and 

analysis of the human genome.  Nature  409: 860-921. 

Jiang, H., Wang, Y., Gu, Y., Guo, X., Zou, Z., Scholz, F., Trenczek, T.E. and Kanost, 

M.R. (2005) Molecular identification of a bevy of serine proteinases in Manduca sexta 

hemolymph. Insect Biochem. Mol. Biol. 35:931-943. 

Johnston, K.A., Lee, M.J., Brough, C.L., Hilder V.A., Gatehouse A.M.R. and Gatehouse 

J.A.  (1995) Protease activities in the larval midgut of Heliothis virescens: Evidence for trypsin 

and chymotrypsin-like enzymes. Insect Biochem. Mol. Biol. 25:375-383. 

Konarev, A.V. (1996) Interaction of insect digestive enzymes with plant protein inhibitors from 

plants and host-parasite coevolution. Euphytica 92:89-94. 

Karlin, S. and Altschul, S.F. (1990) Methods for assessing the statistical significance of 

molecular sequence features by using general scoring schemes. 

Proc. Natl. Acad. Sci. 87: 2264-2268. 

Kraut, J. (1971) Chymotrypsinogen:  X-ray structure.  In The Enzymes, vol. 3 (Boyer, P. 

D., ed.), Academic Press, New York, pp. 165-183. 

Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of 

bacteriophage T4. Nature 227:680-685. 

Levinsky, H., Birk, Y. and Applebaum, S.W. (1977) Isolation and characterization of a 

new trypsin-like enzyme from Tenebrio molitor L. larvae. Int.  J.  Peptide Protein Res. 10: 252-

264. 

Michaud, D., Cantin, L. and Vrain, T.C. (1995) Carboxy-terminal truncation of 

oryzacysatin-II by oryzacytatin-insensitive insect digestive proteinases. Arch. Biochem. Biophys. 

322:  469-474.  

Mittapalli, O., Wise, I.L. and  Shukle, R.H. (2006) Characterization of a serine 

carboxypeptidase in the salivary glands and fat body of the orange wheat blossom midge, 

Sitodiplosis mosellana (Diptera: Cecidomyiidae). Insect Biochem. Mol. Biol. 36: 154-160. 

Müller, H. -M., Crampton, J. M., Torre, A D., Sinden, R. and Crisnti, A. (1993). 

Members of a trypsin gene family in Anopheles gambiae are induced in the gut by blood meal. 

EMBO J. 12: 2891-2900. 



 84

Musil, D., Zucic, D., Eng, R. A., Mayr, I., Huber, R., Popovič, T., Turk, V., Towatari, T., 

Katunuma, N. and Bode, W.  (1991) The refined 2.15 Å x-ray crystal structure of human liver 

cathepsin B: the structural basis for its specificity.  EMBO J. 10: 2321-2330. 

Neurath, H. (1982) The diversity of proteolytic enzymes.  In  Proteolytic Enzymes, a 

Practical Approach (Beynon, R.J. and Bond, J.S. eds.),  IRL Press, Oxford, pp. 1-23.  

Oppert, B.  (2000) Transgenic plants expressing enzyme inhibitors and the prospects for 

biopesticide development.  In Phytochemical Biopesticides (Koul, O. and Dhaliwal, G. S., eds.), 

Harwood Academic, The Netherlands, pp. 83-95. 

Oppert, B., Morgan, T.D., Culbertson, C. and Kramer, K.J.  (1993) Dietary mixtures of 

cysteine proteinase and serine proteinase inhibitors exhibit increased toxicity toward the red flour 

beetle, Tribolium castaneum.  Comp. Biochem. Physiol. 105C: 379-385. 

Oppert, B., Morgan, T.D., Hartzer, K., Lenarcic, B., Galesa, K., Brzin, J., Turk, V., Yoza, 

K., Ohtsubo, K. and Kramer, K.J. (2003) Effects of proteinase inhibitors on growth and digestive 

proteolysis of the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). 

Comp. Biochem. Physiol., 134C: 481-490. 

Oppert, B., Morgan, T.D., Hartzer, K. and Kramer, K.J. (2005) Compensatory proteolytic 

responses to dietary proteinase inhibitors in the red flour beetle, Tribolium castaneum (Herbst) 

(Coleoptera: Tenebrionidae). Comp. Biochem. Physiol. 140C: 53-58. 

Patankar, A.G., Giri, A.P., Harsulkar, A.M., Sainani, M.N., Deshpande V.V., Ranjekar, 

P.K. and Gupta, V.S. (2001) Complexity in specificities and expression of Helicoverpa armigera 

gut proteinases explains polyphagous nature of the insect pest. Insect Biochem. Mol. Biol. 31: 

453-464. 

Pedra, J.H., Brandt, A., Westerman, R., Lobo, N., Li, H.-M., Romero-Severson, J., 

Murdock, L.L. and Pittendrigh, B.R. (2003) Transcriptome analysis of the cowpea weevil 

bruchid: Identification of putative proteinases and α-amylases associated with food breakdown. 

Insect Mol. Biol. 12: 405-412. 

Perona, J. J. and Craik, C.S. (1995) Structural basis of substrate specificity in the serine 

proteases. Protein Sci. 4: 337-360. 

Ramos, A., Mahowald, A. and Jacobs-Lorena, M. (1993) Gut-specific genes from the 

black fly Simulium vittatum encoding trypsin-like and carboxypeptidase-like proteins. Insect 

Mol. Biol. 1:149-163. 



 85

Rawlings, N. D. and Barrett, A. J. (1993) Evolutionary families of peptidases.  Biochem. 

J. 290: 205-218. 

Rawlings, N. D., Morton, F. R. and Barrett, A.J. (2006) MEROPS:  the peptidase 

database.  Nucl. Acids Res.  34: D270-D272. 

Ross, J., Jiang, H., Kanost, M. R. and Wang, Y. (2003) SPs and their homologs in the 

Drosophila melanogaster genome:  an initial analysis of sequence conservation and phylogenetic 

relationship. Gene 304:117-131. 

Rubin, G. M., Yandell, M. D. Wortman, J. R., Miklos, G. L. G., Nelson, C. R. et al.  

(2000)  Comparative genomics of the eukaryotes.  Science 287:2204-2215. 

Terra, W.R. and Cristofoletti, P.T. (1996) Midgut proteinases in three divergent species 

of Coleoptera. Comp. Biochem. Physiol. 113B:725-730. 

Terra, W.R., Ferreira, C. and Bastos, F. (1985) Phylogenetic consideration of insect 

digestion. Disaccharidases and the spatial organization of digestion in the Tenebrio molitor 

larvae. Insect Biochem. 15:443-449. 

Terra, W.R. and Ferreira, C. (1994) Insect digestive enzymes: properties 

compartmentalization and function. Comp. Biochem.  Physiol. 109B:1-62. 

Thie, N.M.R. and Houseman, J.G.  (1990) Cysteine and serine proteolytic activities in 

larval midgut of yellow mealworm, Tenebrio molitor L. (Coleoptera: Tenebrionidae). Insect 

Biochem. 20:741-744. 

Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: Improving the 

sensitivity of progressive multiple sequence alignment through sequence weighting, positions-

specific gap penalties and weight matrix choice. Nucl. Acid Res.  22: 4673-4680. 

Titani, K., Ericsson, L.H., Walsh, K.A. and Neurath, H. (1975) Amino-acid sequence of 

bovine carboxypeptidase B. Proc. Natl. Acad. Sci. USA 72:1666-1670. 

Tsybina, T.A.,  Dunaevsky, Y.E., Belozersky, M.A.,  Zhuzhikov, D.P., Oppert, B. and 

Elpidina, E.N. (2005) Digestive proteinases of yellow mealworm (Tenebrio molitor) larvae: 

Purification and characterization of a trypsin-like proteinase. Biochemistry (Mosc.) 70: 300-305. 

Urieli, N. (1982) Isolation and characterization of a chymotrypsin-like enzyme from the 

digestive tract of Tenebrio molitor and Locusta migratoria. In: Applebaum, S.W. (1985). 

Biochemistry of digestion. In: G.A. Kerkut and L.I. Gilbert, Editors, Comprehensive Physiology, 

Biochemistry and Pharmacology of Insects, Pergamon Press, Oxford, 4: pp. 279-311. 



 86

Vinokurov, K. S., Elpidina, E. N., Oppert, B., Prabhakar, S.,  Zhuzhikov, D. P.,  

Dunaevsky, Y. E. and Belozersky, M. A.  (2006a) Diversity of digestive proteinases in Tenebrio 

molitor (Coleoptera: Tenebrionidae) larvae.  Comp. Biochem. Physiol., Part B, in press. 

Vinokurov, K. S., Elpidina, E. N., Oppert, B., Prabhakar, S.,  Zhuzhikov, D. P.,  

Dunaevsky, Y. E. and Belozersky, M. A. (2006b)  Fractionation of digestive proteinases from 

Tenebrio molitor (Coleoptera: Tenebrionidae) larvae and role in protein digestion.  Comp. 

Biochem. Physiol., Part B, in press. 

Wagner, W., Möhrlen, F., and Schnetter, W. (2002) Characterization of the proteolytic 

enzymes in the midgut of the European Cockchafer, Melolontha melolontha (Coleoptera: 

Scarabaeidae). Insect Biochem. Mol. Biol. 32:803-814. 

Ward, W., Alvarado, L., Rawlings, N. D., Engel., J. C., Franklin, C., and McKerrow, J. 

H.  (1997) A primitive enzyme for a primitive cell:  the protease required for excystation of 

Giardia.  Cell 89: 437-444. 

Xu, X., Dong, Y., Abraham, E.G., Kocan, A., Srinivasan, P., Ghosh, A.K., Sinden, R.E., 

Ribeiro, J.M., Jacobs-Lorena, M., Kafatos, F.C. and Dimopoulos, G. (2005) Transcriptome 

analysis of Anopheles stephensi-Plasmodium berghei interactions. Mol. Biochem. Parasitol. 142: 

76-87. 

Zdobnov, E. M., Von Mering, C., Letunic, I., Torrents, D., Suyama, M., Copley, R. R., 

Christophides, G. K., Thomasova, D., Holt, R. A., Subramanian, G. M., et al. (2002) 

Comparative genome and proteome analysis of Anopheles gambiae and Drosophila 

melanogaster.  Science  298: 149-159. 

Zhu-Salzman, K., Koiwa, H., Salzman, R.A., Shade, R.E. and Ahn, J.-E. (2003) Cowpea 

bruchid Callosobruchus maculatus uses a three-component strategy to overcome a plant 

defensive cysteine protease inhibitor. Insect Mol. Biol. 12:135-145. 

Zwilling, R. (1968) Zur Evolution der Endopeptidasen-IV. α- and β-protease aus 

Tenebrio molitor.  Z. Physiol. Chem. 349:326-332. 

Zwilling, R., Medugorac, I. and Mella  K.  (1972) The evolution of endopeptidases-XIV. 

Non-tryptic cleavage specificity of a BAEE-hydrolyzing enzyme (β-protease) from Tenebrio 

molitor. Comp. Biochem. Physiol.  43: 419-424. 

 

 



 87

 

Figure 3.1. Categories of sequences from randomly picked clones of cDNA libraries from T. 

molitor larvae (BLASTX matches with E<10) 
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Figure 3.2. Distribution of sequences encoding digestive proteases from the anterior and 

posterior midgut cDNA libraries of T. molitor 
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Figure 3.3. Alignment of predicted proteases from T. molitor larvae A) Alignment of serine 

proteases from T. molitor with trypsins from Drosophila melanogaster (Dmatryp, accession 

# CAA26732) and Homo sapiens (HsPRSS2b, accession # AAL14244); B) Alignment of 

predicted cathepsin B sequences with cathepsin B proteins from Diabrotica virgifera 

virgifera (DvvcathB accession #CAE47498) and Araneus ventricosus (AvcathB, accession # 

AAP59456); C) Alignment of predicted cathepsin L sequences with cathepsin L from T. 

molitor (TmcathL, accession # AAP94048); D) Alignment of predicted carboxypeptidase 

sequences  with carboxypeptidase A from Aedes aegypti (AeCPA, accession #AAT36730) 

and Bos taurus (BtCPA- Accession# POO730). Shaded regions at the N-terminus are 

predicted signal peptides and within the sequences represent potential N-glycosylation 

sites; bolded sequences are conserved cysteines or critical residues; active site residues are 

boxed; arrow indicates activation site; stars indicate resiudes that determine specificity; 

loop regions are indicated in brackets. 
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Figure 3.3A 

                      10        20        30        40        50        60 

                       |         |         |         |         |         | 

PM1-83       ---------MKSVLFVVFLVASASAVPPFLRKNSLMP-----DGR IVGGSSISISSVPWQ 

PM1-75(tmt1a)---------MKSVLFVVFLVASASAVPPFLRKNSLMP-----DGR IVGGSSISISSVPWQ 

PM2-70(tmt1b)---------MKSVLFVVFLVASASAVPPFLRKNSLMP-----DGR IVGGSSISISSVPWQ 

PM1-95(tmt1c)---------MKSILFVVFLVASASAVPPFLRKNSLLP-----DGR IVGGSSISISSVPWQ 

PM2-03       ---------MKSILFVVFLVASASAVPPFLRKNSLLP-----DGR IVGGSSISISSVPWQ 

DmaTry       ------------MLKIVILLSAVVCALGGTVPEGLLPQL---DGR IVGGSATTISSFPWQ 

HsPRSS2b     --------MHMRETSGFTLKKGRSAPLVFHPPDALIAAPFDDDDK IVGGYICEENSVPYQ 

AM1-11       ----------MKIIVTIFVCVTASMATPVNVDSNI-------DWR VVGGSTATPHQFPFI 

AM1-62       ---------MFTQIVTILLLAATALGSPI-------------GGR IVNGTDAQDGDFPSI 

AM2-58       ---------MFTQIVTILLLAATALGSPI-------------GGR IVNGTDAQDGDFPSI 

AM3-01       ---------MFTQIVTILLLAATALGSPI-------------GGR IVNGTDAQDGDFPSI 

AM4-75       ---------MFTQIVTILLLAATALGSPI-------------GGR IVNGTDAQDGDFPSI 

AM4-47       -----------MKAVTLV-LCASLI-----WAQAAQIKSRQIGGR IIGGEEANAGQFPFA 

PM2-57       -----------MKAVTLV-LCASLI-----WAQAAQIKSRQIGGR IIGGEEANAGQFPFA 

PM1-93       -----------MKVLVLIAVLVSSI-----CAHHLGRLRAAPGGR IIGGGDANAGEFPFA 

L4-24        -----------MSLIFLFVCFVASF--------LASSVETKPGAR IIGGLDSYAGQFPFA 

S3-72        -----------MSLIFLFVCFVASF--------LASSVETKPGAR IIGGLDSYAGQFPFA 

PM4-31       -----------MSLIFLFVCFVASF--------LASSVETKPGAR IIGGLDSYAGQFPFA 

PM2-01       -----------MSLIFLFVCFVASF--------LASSVEAKPGAR IIGGLDSYAGQFPFA 

PM3-37       -----------MK-LFVLVLCVAALSAPSFAGKIKALAKRNISGR IVGGQDANVGQFPSA 

L3-34        -----------MKFLVVLISCVAAI----WAKQIPAHAKSNNGLR IIGGQEARAGQFPFA 

L4-25        -----------MQLSNQYCFLLLGS----HEGHAAATQSRKIGGR IVEENQSTLVSFPFS 

PM4-08       -----------MKFIALTLLCLSAVS---ALSFLRKLPNSKPGAR IVGGQQASPGQFPWQ 

PM4-54       -----------MKFLVLTLLCLSAVS---ALSFLRKLPNSKPGAR IVGGQQASPGQFPWQ 

PM4-63       -----------MKFLVLTLLCLSAVS---ALSFLRKLPNSKPGAR IVGGQQASPGQFPWQ 

PM4-36       MFDFNIPLVGLRVKPSKMSTFITIFSLCVTLFVVSTHSAHAIGSR IIGGQVARAAEFPWQ 

PM4-60       MFDFNIPLVGLRVKPSKMSTFITIFSLCVTLFVVSTHSAHAIGSR IIGGEVARAAEFPWQ 

PM5-80       MFDFNIPLVGLRVKPSKMSTFITIFSLCVTLFVVSTHSAHAIGSR IIGGEVARAAEFPWQ 

AM4-49       MKRIAIFCLCFVLVWATPLQKSLLKEVSVKDID----------SR ILNGAQAALGQFPWE 

AM1-01       MKHIAIFCLCFVLVWTTPLQKSPLKKVSVKDID----------SR IINGDQAGLAQFPWQ 

AM3-26       MKHIAIFCLCFVLVWATPLQKSPLKKVSVKDID----------SR IINGDQAGLAQFPWQ 

PM5-90       MKHIAIFCLCYVLVWATPLQKSPFKKVPVRDLD----------SR IINGDLAGLGQFPWQ 

AM2-68       MKSIVLICLCVVSAWA-----GLITERKPVPVKKHFG------GR IVGGDEAAENQFPWQ 

AM4-68       MKSIVLICLCVVSAWA-----GLITERKPVPVKKHFG------GR IVGGDEAAENQFPWQ 

L3-22        MKSIVLICLCVVSAWA-----GLITERKPVPVKKHFG------GR IVGGDEAAENQFPWQ 

PM4-06(tmc1a)MFHLALLVLCAASALALPAELPLLPGAPPATTSMRYAPFREISGR IISGSAASKGQFPWQ 

PM4-86       --MRSAVILVALVASTTAAPQVSKLRFRNLYKHPLREPR-NVLPR IIGGQEAAPHSIPSQ 

PM5-92       --MRSAVILLALVASTTAAPQVSKLSFRNLYKHPLREPR-NVLPR IIGGQEAAPHSIPSQ 

S3-80        --MKTAILILAFVALAAAIPKPTKLHYRNLFKQPVGEIKIKTNPR IIGGQEATPHSIPYR 

AM1-21       ----------MKIIVTIFVCVTASMATPVNVDSNI-------DWR VVGGSTATPHQFPFI 
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                      70        80        90       100      110       120 

  

PM1-83       ISLQY-Y--GSHICGGSIISANYVVTAAHCTDGLTAGSLTVRAGTSTRGSGGQV---VNV 

PM1-75(tmt1a)ISLQY-Y--GSHICGGSIISANYVVTAAHCTDGLTAGSLTVRAGTSTRGSGGQV---VNV 

PM2-70(tmt1b)ISLQY-Y--GSHICGGSIISANYVVTAAHCTDGLTAGSLTVRAGTSTRGSGGQV---VNV 

PM1-95(tmt1c)ISLQY-Y--GSHICGGSIISANYIVTAAHCTDGLTAGSLSVRAGTSTRGSGGQV---VNV 

PM2-03       ISLQY-Y--GSHICGGSIISANYIVTAAHCTDGLTAGSLTVRAGTSTRGSGGQV---VNV 

DmaTry       ISLQR-S--GSHSCGGSIYSANIIVTAAHCLQSVSASVLQVRAGSTYWSSGGVV---AKV 

HsPRSS2b     VSLN--S--GYHFCGGSLISEQWVVSAGHCYKSRIQVRLGEHNIEVLEGNE-QF---INA 

AM1-11       VSLRTPY--DSHNCGGSIIAKNYVITAAHCVSGYAPSYYTVVAGTNQLNATNPLR--LKV 

AM1-62       VSVRF-L--NSHNCGGSILNERYILTAAHCVVSYPASFLSVQYDVTTISSGSNAPNVLKV 

AM2-58       VSVRF-L--NSHNCGGSILNERYILTAAHCVVSYPASFLSVQYDVTTISSGSNAPNVLKV 

AM3-01       VSVRF-L--NSHNCGGSILNERYILTAAHCVVSYPASFLSVQYDVTTISSGSNAPNVLKV 

AM4-75       VSVRF-L--NSHNCGGSILNERYILTAAHCVVSYPASFLSVQYDVTTISSGSNAPNVLKV 

AM4-47       AAIYKSTADGTYFCTGALMNTQWIITAGQCVEG--GTLFTIRLGSNSLNSNDPNALRLST 

PM2-57       AAIYNSTADGTYFCTGALMNTQWIITAGQCVEG--GTLFTIRLGSNSLNSNDPNALRLSA 

PM1-93       AAIQSQTNAGQYFCGGALVNTLFIVTSGSCVDG--ATLFSIRLGITSLAETGQ---RLAT 

L4-24        AAINVQTADSRFFCGGALLNHNWVITSGHCVNN--ATIFTIQLGSNTLTSADPDREIFST 

S3-72        AAINVQTADSRFFCGGALLNHNWVITSGHCVNN--ATIFTIQLGSNTLTSADPDREIFST 

PM4-31       AAINVQTADSRFFCGGALLNHNWVITSGHCVNN--ATIFTIQLGSNTLTSADPDREIFST 

PM2-01       AAINVQTADSRFFCGGALLNHNWVITSGHCVNN--ATIFTIQLGSNTLTSADPDREIFST 

PM3-37       AAIYVSTSTGTYFCGGSLISQQWVLTAAHCIAG--GVAFQVILGSNTLKGTDPNRKTLAT 

L3-34        AAITVQTETSQFFCGGALINNDWILTSAHCVTG--AVTVTIRLGSNNLQGSDPNRITVAS 

L4-25        AAIYVQAASSTFFCGGALINNQWVLTAAHCVDG--AISFTIRLGSNSLVDSDPNRVTVAS 

PM4-08       AAIYKYTADGRYFCGGTLYNEQWILTAGQCVID--ATEFTIQLGSNQLDSTDNNRVVVNA 

PM4-54       AAIYKYTADGRYFCGGTLFNEQWILTAGQCVID--ATEFTIQLGSNQLDSTDNNRVVLNA 

PM4-63       AAIYKYTADGRYFCGGSLFNEQWILTAGQCVID--ATEFTIQLGSNQLDSTDNNRLVLNA 

PM4-36       VAIYVDTVDGKFFCGGSLLNREWILTAAHCLYN--GRLYTIQLGSTTLQSGDANRVVVAT 

PM4-60       VAIYVDTVDGKFFCGGSLLNREWILTAAHCLYN--GRLYTIQLGSTTLQSGDANRVVVAT 

PM5-80       VAIYVDTVDGKFFCGGSLLNREWILTAAHCLYN--GRLYTIQLGSTTLQSGDANRVVVAT 

AM4-49       AALYVNIGTTTYFCSGNIISEEWILTVAQCIIG--ADSIDVLAGLIDL---NGSGTVARG 

AM1-01       AALFI---GSYFVCSGSIISEEWILTAAQCIEG--TSTVTVLAGIVDL---NGTGAVVQS 

AM3-26       AALYI---GSYFVCSGSIISEEWILTAAQCIDG--VGTVTVLAGIVDL---NGSGAVVQS 

PM5-90       AAVYVPLGSSYFVCGGSIISEQWILTAAQCIYG--VDSVTILAGVVDL---NGSGASAQS 

AM2-68       VAVYFDTSDGTYFCGGALVAENWVLTAGHCVYH--AKVFTLHLGSNSLVDDDDNRVTLGA 

AM4-68       VAVYFDTSDGTYFCGGALVAENWVLTAGHCVYH--AKVFTLHLGSNSLVDDDDNRVTLGA 

L3-22        VAVYFDTSDGSYFCGGALVAENWVLTAGHCVYH--AKVFTLHLGSNSLVDDDDNRVTLGA 

PM4-06(tmc1a)AALYLTVSGGTSFCGGALISSNWILTAAHCTQG--VSGITAYLGVVSL--SDSSRVTAQA 

PM4-86       AFLEMYTENEGWYCGGSLISENYVLTAGHCGED--VVKAMVSLGAHALSESVEGEITVDS 

PM5-92       AFLEMYTENEGWYCGGSLISENYVLTAGHCGED--VVKAVVALGAHALSESVEGEITVDS 

S3-80        TFLEVYSDSEGWYCGGSLISENYVLTAGHCGED--AVEAHVTLGAHKPLQTEDTQVQSVS 

AM1-21       VSLRTPY--DSHNCGGSIIAKNYVITAAHCVSGYAPSYYTVVAGTNQLNATTPFRPFKSW 
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                    130       140       150       160       170       180 

                      |         |         |         |         |         | 

PM1-83       ARINQNPSYN-DRVIDYDISVLQLSSSLSLGSSVAAVGL—-PSSSTSWSAGTSVLVTGWG 

PM1-75(tmt1a)ARINQNPSYN-DRVIDYDISVLQLSSSLSLGSSVAAVGL--PSSSTSWSAGTSVLVTGWG 

PM2-70(tmt1b)ARINQNPSYN-DRVIDYDISVLQLSSSLSLGSSVAAVGL--PSSSTSWSAGTSVLVTGWG 

PM1-95(tmt1c)ARINQNPSYN-DRLIDYDISVLQLSSSLSLGSSVAAVGL--PSSSTSWSAGTSVLVTGWG 

PM2-03       ARINQNPSYN-DRLIDYDISVLQLSSSLSLGSSVAAVGL--PSSSTSWSAGTSVLVTGWG 

DmaTry       SSFKNHEGYN-ANTMVNDIAVIRLSSSLSFSSSIKAISL--ATYNPA--NGASAAVSGWG 

HsPRSS2b     AKIIRHPKYN-SRTLDNDILLIKLSSPAVINSRVSAISL--PTAPPA--AGTESLISGWG 

AM1-11       AQIIVHPEYS-SSLILNDVALLRLETPIEESEEVQIVGL--ETEYVD--TVRDCVLIGWG 

AM1-62       SSVIYNKDYTPGNGYINDVAVLKLQSPIIFGTNARPIKL--PVAFNSTPENSPAELGGWG 

AM2-58       SSVIYNKDYTPGNGYINDVAVLKLQSPIIFGTNARPIKL--PVAFNSTPENSPAELGGWG 

AM3-01       SSVIYNKDYTPGNGYINDVAVLKLQSPIIFGTNARPIKL--PVAFNSTPENSPAELGGWG 

AM4-75       SSVIYNKDYTPGNGYINDVAVLKLQSPIIFGTNARPIKL--PVAFNSTPENSPAELGGWG 

AM4-47       DTYFVHPEYDPL-TLINDIGLIKLRIAITLTDYISPIS---LLAGSTLPDSSSVLTIGWG 

PM2-57       DTYFVHPEYDPL-TLINDIGLIKLRIAITLTDYISPIS---LLAGSTLPDSSSVLTIGWG 

PM1-93       DKYVLHPLYNID-TLENDIGVIELRLPVSFTDYIQPIG---MPTRDVQTNAIAI-AIGWG 

L4-24        NDYVIHPDFVPD-TIENDIGLIKLRLPVSFTSYIQPIN---LPTVG-LLNETQVTALGWG 

S3-72        NDYVIHPDFVPD-TIENDIGLIKLRLPVSFTSYIQPIN---LPTVS-LLNETQVTALGWG 

PM4-31       NDYVIHPDFVPD-TIENDIGLIKLRLPVSFTSYIQPIN---LPTVS-LLNETQVTALGWG 

PM2-01       NDYVIHPDFVPD-TIENDIGLIKLRLPVSFTSYIQPIN---LPTVS-LLNETQVTALGWG 

PM3-37       SIYVNHPDFNPD-TLENDIGLVKFHLPIEYNDYIQPVY---LPTVD-LIDNLGNTAIGWG 

L3-34        SHVVPHPEFDPD-TSVNDIGLVKLRMPVEFTDYIQPIN---LASTP-LPNSAAPTAIGWG 

L4-25        SHYVAHPDYDPL-TLEHNIGLIALRLPIQFTGYIQPIQ---LTDKE-ITTYNHLTAIGWG 

PM4-08       TTYYVEPRFDPTVSLRHDVGMIKLPSPVTVNDYIQPVRM--LESMSPIYKGVAVETAGWG 

PM4-54       TTYYVHPSFDPTVSLHFDIGMIKLSSPVTLTDYIQPVRM--LESMSPIYKGVSVETAGWG 

PM4-63       TTYYVHPSFDPTVSLRFDIGMIKLSSPVTLTDYIQPVRM--LESMSPIYKGVSVETAGWG 

PM4-36       STAVIFPNFDPE-TLEHDIGLIKLHMEITLTDYIQPIT---LAEVGDTVEGMPAIAVGWG 

PM4-60       STAVIFPNFDPE-TLEHDIGLIKLHMEITLTDYIQPIS---LAEVGDTVEGMPAIAVGWG 

PM5-80       STAVIFPNFDPE-TLEHDIGLIKLHMEITLTDYIQPIS---LAEVGDTVEGMPAIAVGWG 

AM4-49       TEIVLHGDYDPD-AFNNDIGLIKLSTPITFNVNVAPIA----LAETLLEDGIDVRVSGWG 

AM1-01       SELILHKDYDPY-NFINDIGLVQLSTPLTFTRYLAPIA----LADNLLEDGLDVTVSGWG 

AM3-26       SDLILHKDYDPD-YFLNDIGLVQLRTPLTFTRYLAPIA----LADNLLEDGLDVTISGWG 

PM5-90       SKLIVHNDYKLD-IPDNDIGLVQLSTPLTFNQYVAAIT----LAENLLEDGVNVTVSGWG 

AM2-68       SYSVPHPDYDPS-DLENDIGLIRIDTAYKTNDHIKVIP----LASSELGADVDVIVSGWG 

AM4-68       SYSVPHPDYDPS-DLENDIGLIRIDTAYKTNDHIKVIP----LASSELGADVDVIVSGWG 

L3-22        SYSVPHPDYDPS-DLENDIGLIRIDTAYKTNDHIKVIP----LASSELGADVDVIVSGWG 

PM4-06(tmc1a)SRVVAHPSYSSS-TLANDIALIQLSTSVATSTNIRTIS----LSSSTLGTGASVTVSGWG 

PM4-86       QDVTVHADYDGN-VIINDIAVIKLPEPVTLSDTIQPVALPTTADVDNTFTGEEARVSGWG 

PM5-92       QDVTVHADYDGN-VIINDIAVIKLPEPVTLSDTIQPVALPTTADVDNTFTGEEARVSGWG 

S3-80        KDIKIHEDYDGD-QVINDVGLIKPPESVTLNDAIKPVTLPSKADADNDFAGETARVSGWG 

AM1-21       AQNL-------------------------------------------------------- 
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                    190       200       210       220       230       240 

                      |         |         |         |         |         | 

PM1-83       TTTEGSSSLPSALQGVNVQIVSQSTC-SSAYGSGS-ITDRMLCAGVTGGGKDACQGDSGG 

PM1-75(tmt1a)TTTEGSSSLPSALQGVNVQIVSQSTC-SSAYGSGS-ITDRMLCAGVTGGGKDACQGDSGG 

PM2-70(tmt1b)TTTEGSSSLPSALQGVNVQIVSQSTC-SSAYGSGS-NTDRMLCAGVTGGGKDACQGDSGG 

PM1-95(tmt1c)TTTEGSSSLPSALQGVNVQTVSQSTC-SSAYGSGS-ITDRMLCAGVTGGGKDACQGDSGG 

PM2-03       TTTEGSSSLPSALQGVNVQIVSQSTC-SSAYGSGS-ITDRMLCAGVTGGGKDACQGDSGG 

DmaTry       TQSSGSSSIPSQLQYVNVNIVSQSQCASSTYGYGSQIRNTMICAAASG--KDACQGDSGG 

HsPRSS2b     NTLSSGADYPDELQCLDAPVLSQAECEASYPGK---ITNNMFCVGFLEGGKDSCQGDSGG 

AM1-11       RTSYPGS-IPNDLQFLNERTYPNDEC-VSRWASAHAVYSSQICT-LXKVGEGACHGDSGG 

AM1-62       LPYSGGT-VMTHLQIVNITVFSDDECERIHAQTGPTSRKYHVCAGVPQGGKGQCNGDSGG 

AM2-58       LPYSGGT-VMTHLQIVNITVFSDDECERIHAQTGPTSRKYHVCAGVPQGGKGQCNGDSGG 

AM3-01       LPYSGGT-VMTHLQIVNITVFSDDECERIPAQTGPTSRKYHVCAGVPQGGKGQCNGDSGG 

AM4-75       LPYSGGT-VMTHLQIVNITVFSDDECERIHAQTGPTSRKYHVCAGVPQGGKGQCNGDSGG 

AM4-47       QIDDETAGLVDALNYVYLVTLSNEEC-RLAFG-DQVNDNMVCVDG-NYN-QGTCRGDLGS 

PM2-57       QIDDETAGLVDALNYVYLVTLSNEER-RLAFG-DQVNDNMVCVDG-NYN-QGTCRGDLGS 

PM1-93       QIGDADAGLTNQLQTVELVALSNEEC-RLTFG-NQIADTMVCVDG-NYN-EGACLGDVGS 

L4-24        QTSDSDSALSETLQYVSATILSNAAC-RLVYG-NQITDNMACVEG-NYN-EGTCIGDTGS 

S3-72        QTSDSDSALSETLQYVSATILSNAAC-RLVYG-NQITDNMACVEG-NYN-EGTCIGDTGS 

PM4-31       QTSDSDSALSETLQYVSATILSNAAC-RLVYG-NQITDNMACVEG-NYN-EGTCIGDTGS 

PM2-01       QTSGSDSALSETLQYVSATILSNAAC-RLVYG-NQITDNMACVEG-NYN-EGTCIGDTGI 

PM3-37       QTSDENAGIVNELNYVTVTTISNAEC-QLSYG-NTIFDTMVCVAG-NYN-ERTCRGDSGS 

L3-34        QTSDDDPEMSNGLNYVGLAVLSNEEC-RMVYG-NQLTDDMVCVEG-NFN-ERACLGDSGS 

L4-25        QTSDADPELSDHLQYVSLITITNEEC-KNVYG-FQVSDDMICATG-NYI-EGTCLGDTGS 

PM4-08       QTAD-SGDIVNDLNYVQLKIIANTEC-QSYYG-DQFFGSMTCTEGANYN-EGFCFGDVGG 

PM4-54       QTSD-NGDLVNDLNYVQLKIIANAEC-KTYYG-NQFWGTMTCTEGSNYN-EGFCFGDVGG 

PM4-63       QTSD-NGDLVNDLNYVQLKIIANAEC-KTYYG-NQFWGTMTCTEGSNYN-EGFCFGDVGG 

PM4-36       QISDSLSGLANDLHYVTVVVISNAEC-RLTYG-DQVKSTMFCTVG-NYN-EEFALVILED 

PM4-60       QISDSLSGLANDLHYVTMVVISNAEC-RLTYG-DQVKSTMFCTVG-NYN-EGICTGDTGG 

PM5-80       QISDSLSGLAHDLHYVTMVVISNAEC-RLTYG-DQVKSTMFCTVG-NYN-EGICTGDTGG 

AM4-49       ATSD-VGGVSEFLSYVDLVTIRNSEC-IAVYG-NTIVDSIVCAQSATALLKSVCKGDGGS 

AM1-01       ATVS-GGNESQLLLYADLVTIRNSEC-TAIYG-NTILDSIVCAESGTAVLKNICTGDGGA 

AM3-26       ATDS-DGDESQFLNYADLVTIRNREC-TAIYG-N-IQDSSVCAKSETVTVQNACYGDGGA 

PM5-90       ATSD-DDDENQLLYYVDLVTIRNSEC-TAIYG-S-IQDSSVCAESGTATVKNACYGDGGD 

AM2-68       ASGDWDG-VENHLRFVGLKTLSNDDC-KAIYGEAVITDGMVCAVGPNS--EGTCNGDSGG 

AM4-68       ASGDWDG-VENHLRFVGLKTLSNDDC-KAIYGEAVITDGMVCAVGPNS--EGTCNGDSGG 

L3-22        ASGDWDG-VENHLRFVGLKTLSNDDC-KAIYGEAVITDGMVCAVGPNS--EGTCNGDSGG 

PM4-06(tmc1a)RTSDSSSSISQTLNYVGLSTISNTVC-ANTYG-SIIQSGIVCCTGSTI--QSTCNGDSGG 

PM4-86       LTEGFDEIFSDVFNYVDVKVISNEEC-FRDYD--NVIDSILCTSGDART--GSCEGDSGG 

PM5-92       LTDGFDEILSDVLNYVDVKVISNEGC-LRDYD--NVIDSILCTSGDART—-GSCEGDSGG 

S3-80        LTDGFDTDLSEVLNYVDVEVISNEKC-EDTFG--SLVPSILCTSGDAYT—-GSCSGDSGG 

AM1-21       ------------------------------------------------------------ 
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                    250       260       270       280       290       300 

                      |         |         |         |         |         | 

PM1-83       PLVVGN ---VL--AGIVSWGY-GCARNG---YPGVYSNVPALRSYFQQTAGI------- 

PM1-75(tmt1a)PLVVGN----VL--AGIVSWGY-GCARNG---YPGVYSNVPALRSYIQQTAGI------- 

PM2-70(tmt1b)PLVVGN----VL--AGIVSWGY-GCARNG---YPGVYSNVPALRSYIQQTAGI------- 

PM1-95(tmt1c)PLVVGN----VL--AGIVSWGY-GCARNG---YPGVYSNVPALRSYIQQTAGI------- 

PM2-03       PLVVGN----VL--AGIVSWGY-GCARNG---YPGVYPNVPALRSYIQQPPEYKLFKYLL 

DmaTry       PLVSGG----VL--VGVVSWGY-GCAYSN---YPGVYADVAVLRSWVVSTANSI------ 

HsPRSS2b     PVVSNG----EL--QGIVSWGY-GCAQKN---RPGVYTKVYNYVDWIKDTIAANS----- 

AM1-11       PLVVVKDDKFSL--IALVSWGS-PCAR-G---MPDVYTRVASFHEFITDNIKN------- 

AM1-62       PLVVNG----VQ--VGIVS----------------------------------------- 

AM2-58       PLVVNG----VQ--VGIVSWSVKPCTVKG---YPGVFTKVSSQVPWILEQIEDKN----- 

AM3-01       PLVVNG----VQ--VGIVSWSVKPCTVKG---YPGVFTKVSSQVPWILEQIGGV------ 

AM4-75       PLVVNG----VQ--VGIVSWSVKPCTVKG---YPGVFTKVSSQVPWILEQIGGV------ 

AM4-47       PLIQYGGSSLIY-HVGVSSFISSNGCEST---DPSGFTRTAPYIEWLNNVTTNN------ 

PM2-57       PLIQYGGSSLIY-HVGVSSFISSNGCEST---DPSGFTRTAPYIEWLNNVTTNN------ 

PM1-93       PLIQYVNGHRAT-IVGISSFISGNGCEST---DPSGYTRAFPFVEWIQNNTQVPS----- 

L4-24        PLVEYLSRLYWI--VGVSSFLSGNGCEST---DPSGYTRIFPYTDWIRTIINP------- 

S3-72        PLVEYLSRLYWI--VGVSSFLSGNGCEST---DPSGYTRIFPYTDWIRTIINP------- 

PM4-31       PLVEYLSRLYWI--VGVSSFLSGNGCEST---DPSGYTRIFPYTDWIKTIINP------- 

PM2-01       PLVEYLSRLYWI--VGVSSFLSGMGAKVLILQDIQEYSHIQIGSD-PSSILNLCL----- 

PM3-37       PLMTTLNHHHWT--VGVASFISTNGCEST---DPSGYTRTFPYVDWIKTTAEIV------ 

L3-34        PLVVRLIGGLFLQHVGVFSFYSGNGCETT---DPSGNTRTYAYIDWIRETANITMF---- 

L4-25        PLIQHIYNPQGVRHAGIASFISGDGCDQP---HPSGYTRTYLYLDWIANVTSGTY----- 

PM4-08       ALLGDVPVGDYKIQVGISSFISQNGCESL---DPTGYTRTDAYFQWMHNISKYG------ 

PM4-54       ALLADVPVGDYKIQVGISSFISQNGCESL---DPTGYTRVDGPYSWIVDTIRNNSIV--- 

PM4-63       ALLADVPVGDYKIQVGISSFISQNGCESL---DPTGYTRVVATIHGLLIL---------- 

PM4-36       PW---------------------------------------------------------- 

PM4-60       PLVIAKGINSYV-QIGVAGFFSSQGCESM---HPSGYIRTDVYNDWIWNTTQSL------ 

PM5-80       PLVIAKGINSYV-QIGVAGFFSSQGCESM---HPSGYIRTDVYNDWIWNTTQSL------ 

AM4-49       PLVIDAGI-SPV-LVGLVSFISTDGCESG---HPTGFTRTAAYRDWIRTNSGV------- 

AM1-01       ALVLDVET-DPV-HVGLVSFFGGGSCESG---YPFGSTRTASFRIWIRDETGV------- 

AM3-26       PLVLDVET-DPV-HVGFLSFIGGDTCESG---YPSGFTRTASFRIWIRDETGV------- 

PM5-90       PLVLDVET-NPV-HVGLLSFLGGDRCESR---YPSGFTRTASFKNWIRDITDV------- 

AM2-68       PLVIDDGSGNSV-HVGVVSWASASGCETN---RPSGYTRTAAYRDWVESVIG-------- 

AM4-68       PLVTDDGSGNSV-HVGVVSWASASGCETN---HPSGYTRTAAYRDWVESVIG-------- 

L3-22        PLVIDDGSGNSV-HVGVVSWASASGCETN---HPSGYTRTAAYRDWVESVIG-------- 

PM4-06(tmc1a)PLVTGSGT-SAV-HVGIVSFGSSAGCAKG---YPSAYTRTAAYRSWISSNAGV------- 

PM4-86       PFILNGT------QIGIVSYGI-TYCLPG---YPSGFTRVTSFLEWIGENTDVQIE---- 

PM5-92       PLILNGT------QIGIVSYGI-TYCLPG---YPSGFTRVTSFLDWIGENTDVQIE---- 

S3-80        PLIKDDV------QIGVVSFGFWNHLLLA---WISLWLLQSHQLLGLDCHQFRCSNPINF 

AM1-21       ----------------------------------------------------------- 

                                                                          Loop 2      
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PM1-83       ---- 

PM1-75(tmt1a)---- 

PM2-70(tmt1b)---- 

PM1-95(tmt1c)---- 

PM2-03       PLIT 

Dmtryp       ---- 

HsPRSS1      ---- 

AM1-11       ---- 

AM1-62       ---- 

AM2-58       ---- 

AM3-01       ---- 

AM4-75       ---- 

AM4-47       ---- 

PM2-57       ---- 

PM1-93       ---- 

L4-24        ---- 

S3-72        ---- 

PM4-31       ---- 

PM2-01       ---- 

PM3-37       ---- 

L3-34        ---- 

L4-25        ---- 

PM4-08       ---- 

PM5-73       ---- 

PM4-54       ---- 

PM4-63       ---- 

PM4-36       ---- 

PM4-60       ---- 

PM5-80       ---- 

AM4-49       ---- 

AM1-01       ---- 

AM3-26       ---- 

PM5-90       ---- 

AM2-68       ---- 

AM4-68       ---- 

L3-22        ---- 

PM4-06(tmc1a)---- 

PM4-86       ---- 

PM5-92       ---- 

S3-80        IL-- 

AM1-21       ----                     
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 Figure 3.3B 

 

                     10        20        30        40        50        60 

                      |         |         |         |         |         | 

AM4-18       MKCVLLCIVVLASVA-LSYGGVKLHPLSDEFINEINSKQTTWKAGRNFDVNTPISHVRRL 

AM3-87       ---MKIFLSFVVLVAVLSASLAEIDVLSSEFIDSINRIQSSWVAGRNFPENTTNEYLYKL 

DvvcathB      -------MDIVTHSSDEVTNSKELHPLSDEFINSINAAKSTWTAGRNFAQDKSMDYIIKL 

AvcathB       MKVLVVLAMVLVAVSARSQPFKHIHPLSEKMIEYVNFMNTTWKAGRNFHEGVTMKYIRGL 

 

 

                       70        80        90       100       110     120   

                       |         |         |         |         |        | 

AM4-18       LGVLPKKAN-APKLPVKTHAVNLDA PESFDAREAWPECTSIIGEIRDQASCGSCWAFGA 

AM3-87       NGFIGLHPDPNYKPPVLVHTFNARD VPESFDARTKWPNCDSL-RIRDQGACGSCWAFAS 

DvvcathB     MGVLPDHK--NYMPPVLTHKLEALE IPADFDARQQWPHCPTI-EIRDQGSCGSCWAFGA 

AvcathB      LGVHKDNH--KYRLPSIRHAVPG-D LPESFDSREQWPNCPTI-EIRDQGSCGSCWAFGA 

 

 

                    130       140       150       160       170       180 

                      |         |         |         |         |         | 

AM4-18       VEAMSDRICIHSDASVKVRISAEDLNDCCYDCGDGCNGGWPDLAWSYWSSTGIVTGGLYG 

AM3-87       IESMSDRICIHSSGSAQFMFSPEDLLSCCTSCG-DCGGGYMMSALDFYINEGIVSGGDVN 

DvvcathB     VEAMSDRVCIHSNGESNFHFSSDDLVSCCWTCGMGCNGGYPGAAWHYWVRKGLVSGGQYG 

AvcathB      AEAMSDRHCIHSNGKVNVEISAEDLLTCCDSCGMGCNGGFPGSAWEYWVDKGLVTGGLYN 

 

 

                    190       200       210       220       230       240 

                      |         |         |         |         |         | 

AM4-18       VDEGCKAYSIKPCDHHVDGNLGPC-GDIQRTPACKKSCDSTSDLEYKSDLRRGS-AYSIP 

AM3-87       SNEGCRPYT---ADAHDQGQ----------TPACTKSCRNGYSTSYSADKHYGSNDYVVS 

DvvcathB     TKQGCRPYEIPPCEHHTNGSRPACDASEGNTPKCAKSCESNYKINYSNDLHFGSKAYSIS 

AvcathB      SHVGCQPYTIASCEHHTKGKLPPC-GDIVDTPQCVHMCEKGYNVSYRADKYFGKKSYSID 

 

 

                    250       260       270       280       290       300 

                      |         |         |         |         |         | 

AM4-18       KSESQIQTEIMTNGPVEADYDVYSDFLTYKAVCTNMCQKGGRRSELKAILLGGFLSCNLS 

AM3-87       SVIDQIQYEVMTNGPIIVNFEVFQDFYNYVSGVYRHVSGESVGFHVVKIVGWGVENGVPY 

DvvcathB     SDVKQIQAEILQNGPVEGAFSVYADFVNYKTGVYQHIKGQFLGGHAIRIFGWGVENNTPY 

AvcathB      EQEDQIKTEISTNGPVEAAFTVYADFVTYKSGVYRHVTGEEMGGHAVRILGWGTESGTPY 

 

 

                    310       320       330 

                      |         |         | 

AM4-18       TTSLN---------------------------------- 

AM3-87       WLIANSWGSSWGDHGFFKMLRGQNECGIENYPYAVMPRL 

DvvcathB     WLIANSWNTDWGDSGTFKILRGSDHCGIESGIVAGLPK- 

       AvcathB      WLVANSWNTDWGDKGYFKILRGSDECGIESSIVAGLPKV 

             

 

 

 

 

Occluding loop 
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Figure 3.3C       

                     10        20        30        40        50        60 

                      |         |         |         |         |         | 

AM4-72       MNQFGDMSKEEFLAYVNRGKAQKPKHPENLRMPYVSSKKPLAASVDWRSNAVSEVKDQGQ 

AM3-32       ------------------------------------------------------------ 

AM4-22       ------------------------------------------------------------ 

TmcatL       ------------------------------------------------------------ 

 

 

                     70        80        90       100       110       120 

                      |         |         |         |         |         | 

AM4-72       CGSCWSFSTTGAIEGQLALQRGRLTSLSEQNLIDCSSSYGNAGCDGGWMDSAFSYIHDYG 

AM3-32       ---------------------------MKTLLVLCLAFAATLALPKSPFQEQWS---QFK 

AM4-22       ---------------------------MKTLLVLCLAFAATLALPKSLFQEQWS---QFK 

TmcatL       -------------------------MSELGILVLCLAFAATLALPKSLFQEQWS---QFK 

 

 

                    130       140       150       160       170       180 

                      |         |         |         |         |         | 

AM4-72       IMSESAYPYEAQGDYCRFDSSQSVTTLSGYYDLPSGGENSLADAVGQAGPVAVAIDATDE 

AM3-32       LTHKKSYSSPIEEIRRQLIFKDNVAKIAEHNAKFEKGEVTYSKAMNQFGDMS----KEEF 

AM4-22       LTHKKSYSSPIEEIRRQLIFKDNVAKIAEHNAKFEKGEVTYSKAMNQFGDMS----KEEF 

TmcatL       LTHKKSYSSPIEEIRRQLIFKDNVAKIAEHNAKFEKGEVTYSKAMNQFGDMS----KEEF 

 

                     

                    190       200       210        220       230      240 

                                                                                                              

AM4-72      LQFYSGGLFYDQTCNQSDLNHGVLVVGYGSDN GHWGSNAVSEVKDQGQCGSCWSFSTTGA 

AM3-32      LAYVNRGKAQKPKHPENLRMPYVFSKKPLAAS VDWRSNAVSEVKDQGQCGSCWSFSTTGA 

AM4-22      LAYVNRGKAQKPKHPENLRMPYVSSKKPLAAS VDWRSNAVSEVKDQGQCGSCWSFSTTGA 

TmcatL      LAYVNRGKAQKPKHPENLRMPYVSSKKPLAAS VDWRSNAVSEVKDQGQCGSCWSFSTTGA 

 

 

              

                    250       260       270       280       290       300 

                      |         |         |         |         |         | 

AM4-72       IEGQLALQRGRLTSLSEQNLIDCSSSYGNAGCDGGWMDSAFSYIPDYGIMSEFAYPYEAQ 

AM3-32       VEGQLALQRGGLTSLSEQNLIDCSSSYGNAGCDGGWMDSAFSYIHDYGIMSESAYPYEAQ 

AM4-22       VEGQLALQRGRLTSLSEQNLIDCSSSYGNAGCDGGWMDSAFSYIHDYGIMSESAYPYEAQ 

TmcatL       VEGQLALQRGRLTSLSEQNLIDCSSSYGNAGCDGGWMDSAFSYIHDYGIMSESAYPYEAQ 

 

 

                    310       320       330       340       350       360 

                      |         |         |         |         |         | 

AM4-72       GDYCRFDSSQFVTTLSGYYDLPSGGENSLADAVGQAGPVAVAIDAPDELQFYSGGLFYDQ 

AM3-32       DDYCRFDSSQSVTTLSGYYDLPSGDENSLADAVGQAGPVAVAIDATDELQFYSGGLFYDQ 

AM4-22       GDYCRFDSSQSVTTLSGYYDLPSGDENSLADAVGQAGPVAVAIDATDELQFYSGGLFYDQ 

TmcatL       GDYCRFDSSQSVTTLSGYYDLPSGDENSLADAVGQAGPVAVAIDATDELQFYSGGLFYDQ 

 

 

                    370       380       390       400       410       420 

                      |         |         |         |         |         | 

AM4-72       TCNQSDLNHGVFVVGYGSDNGQDYWILKNSWGFGWGESGYWRQVRNYGNNCGIATAASYP 

AM3-32       TCNQSDLNHGVFVVGYGSDNGQDYWILKNSWGSGWGENGYWTQVRNYGNNCGIATAASYP 

AM4-22       TCNQSDLNHGVLVVGYGSDNGQDYWILKNSWGSGWGESGYWRQVRNYGNNCGIATAASYP 

TmcatL       TCNQSDLNHGVLVVGYGSDNGQDYWILKNSWGSGWGESGYWRQVRNYGNNCGIATAASYP 

 

                         

AM4-72       AL 

AM3-32       AL 

AM4-22       AL 

TmcatL       AL 
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  Figure 3.3D  

                10        20        30        40        50        60 

                      |         |         |         |         |         | 

AM1-02       MNIF-LAFFVLLVSSQHILGDEKIRYDDFKVYRLTPKTVQAVEALRNLEDFNS-EYDFWT 

AM2-60       MNIF-LAFFVLLVSSQHILGDEKIRYDDFKVYRLTPKTVQAVEALRNLEDFNS-EYDFWT 

AM2-51       MNIF-LAFFVLLVSSQHILGDEKVRYDDFKVYRLTPKTVQAVEALRNLEDSNS-EYDFWT 

L4-60        MNIF-LAFFVLLVSSQHILGDEKVRYDDFKVYRLTPKTVQAVEALRNLEDSNS-EYDFWT 

AM3-75       MNIF-LAFFVLLVSSQHILGDEKVRYDDFKVYRLTPKTVQAVEALRNLEDSNS-EYDFWT 

AM1-72       MNIF-LAFFVLLVSSQHILGDEKVRYDDFKVYRLTPKTVQAVEALRNLEDSNS-EYDFWT 

AM1-30       MNIF-LAFFVLLVSSQHILGDEKIRYDDFKVYRLTPKTVQAVEALRNLEDFNS-EYDFWT 

AeCPA        MGFKSILWAATLVATLAVALSERARFDNYRLYRIQVETIQQLEVLQAVEQLGD-GYSFWS 

BtCPA        ------MQGLLILSVLLGAALGKEDFVGHQVLRITAADEAEVQTVKELEDLEHLQLDFWR 

 

 

                     70        80        90       100       110       120 

                      |         |         |         |         |         | 

AM1-02       AVRGVGYPVDIMVAPHLKYRFNDIINSGEFDAEVYISDVQQLIDNERPKTR-------LA 

AM2-60       AVRGVGYPVDIMVAPHLKYRFNDIINSGEFDAEVYISDVQQLIDNERPKTR-------LA 

AM2-51       AVRGVGYPVDIMVAPHLKYRFNDIINSGEFDAEVYISDVQELIDNERPKTR-------LA 

L4-60        AVRGVGYPVDIMVAPHLKYRFNDIINSGEFDAEVYISDVQELIDNERPKTR-------LA 

AM3-75       AVRGVGYPVDIMVAPHLKYRFNDIINSGEFDAEVYISDVQELIDNERPKTR-------LA 

AM1-72       AVRGVGYPVDIMVAPHLKYRFNDIINSGEFDAEVYISDVQELIDNERPKTR-------LA 

AM1-30       AVRGVGYPVDIMVAPHLKYRFNGIINSGEFDAEVYISDVQQLIDNERPKTR-------LA 

AeCPA        EPVNVDSHVELVVPPHKFGEFGELVERYELQAELSVSNLEQLFEHERKRT--------TK 

BtCPA        GPGQPGSPIDVRVPFPSLQAVKVFLEAHGIRYRIMIEDVQSLLDEEQEQMFASQSRARST 

 

 

                    130       140       150       160       170       180 

                      |         |         |         |         |         | 

AM1-02       GTVDWTDYNTLDEINDWLMSLVSEYPDKVSLVKAGISYENREILGVKVVFNPGNEDRTVF 

AM2-60       GTVDWTDYNTLDEINDWLMSLVSEYPDKVSLVKAGISYENREILGVKVVFNPGNEDRTVF 

AM2-51       GIVDWTDYNTLDEINDWLRSLVDEYPDNVSLVKAGTSYENREILGVKVVFNPGNEDRTVF 

L4-60        GIVDWTDYNTLDEINDWLRSLVDEYPDNVSLVKAGTSYENREILGVKVVFNPGNEDRTVF 

AM3-75       GIVDWTDYNTLDEINDWLRSLVDEYPDNVSLVKAGTSYENREILGVKVVFNPGNEDRTVF 

AM1-72       GIVDWTDYNTLDEINDWLRSLVDEYPDNVSLVKAGTSYENREILGVKVVFNPGNEDRTVF 

AM1-30       GTVDWTDYNTLDEINDWLMSLVSEYPDKVSLVKAGISYENREILGVKVVFNPGNEDRTVF 

AeCPA        EAFGWNAYYTLEEIYAWMDELVARYPSVLTAVVGGKSYEGRDIRGVKVSYKEGNPG--VF 

BtCPA        NTFNYATYHTLDEIYDFMDLLVAEHPQLVSKLQIGRSYEGRPIYVLKFSTGGSNRP-AIW 

 

 

          190      200       210     220       230         240    

                         |         |         |         |         | 

AM1-02       IESNIHAREWISSAVTTWILNKLLTSK--DTNVRQIADIHDWYFVPVFNPDGFVYSHTTD 

AM2-60       IESNIHAREWISSAVTTWILNKLLTSK--DTNVRQIADTHDWYFVPVFNPDGFVYSHTTD 

AM2-51       IESNIHAREWISSAVTTWILNQLLTSK--DTNVRQIADTHDWYFVPVFNPDGFVYSHTTD 

L4-60        IESNIHAREWISSAVTTWILNQLLTSK--DTNVRQIADTHDWYFVPVFNPDGFVYSHTTD 

AM3-75       IESNIHAREWISSAVTTWILNQLLTSK--DTNVRQIADTHDWYFVPVFNPDGFVYSHTTD 

AM1-72       IESNIHAREWISSAVTTWILNQLLTSK--DTNVRQIADTHDWYFVPVFNPDGFVYSHTTD 

AM1-30       IESNIHAREWISSAVTTWILNKLLTSK--DTNVRQIADTHDWYFVPVFNPDGFVYSHTTD 

AeCPA        MEGTIHAREWISGATLTWILNELLSSN—DQKVRNIAENYDWYFFPITNPDGYVYTHTTN 

BtCPA        IDLGIHSREWITQATGVWFAKKFTEDYGQDPSFTAILDSMDIFLEIVTNPDGFAFTHSQN 
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                    250       260       270       280       290       300 

                                |         |         |         |         | 

AM1-02       RMWRKTRVPY—-FLCAGADPNRNWGYYFNTGGSSSNPCSETYGGPSAFSEPSTKTLSEFI 

AM2-60       RMWRKTRVPY--FLCAGADPNRNWGYYFNTGGSSSNPCSETYGGPSAFSEPSTKTLSEFI 

AM2-51       RMWRKTRVPY--FLCAGADPNRNWGYYFNTGGSSSNPCSETYGGPSAFSEPSTKTLSEFI 

L4-60        RMWRKTRVPY--FLCAGADPNRNWGYYFNTGGSSSNPCSETYGGPSAFSEPSTKTLSEFI 

AM3-75       RMWRKTRVPY--FLCAGADPNRNWGYYFNTGGSSSNPCSETYGGPSAFSEPSTKTLSEFI 

AM1-72       RMWRKTRVPY--FLCAVPTP-TELGLLFHTGGSSSNPCSETYGGPSAFSEPSTKTLSEFI 

AM1-30       RMWRKTRVPY--FLCAGADPNRNWGYYFNTGGSSSNPCSETYGGPSAFSEPSTKTLSEFI 

AeCPA        RQWRKTRTPHS-ILCVGADANRNWAYNFMQGGASNVPCSDTYAGPSAFSEEETRTLSEYF 

BtCPA        RLWRKTRSVTSSSLCVGVDANRNWDAGFGKAGASSSPCSETYHGKYANSEVEVKSIVDFV 

 

 

                    310       320       330       340       350       360 

                      |         |         |         |         |         | 

AM1-02       TTIGPKLGAYIAFHSYSQLMLLPYGYSSSHLDNYQDLYNVGVKAASSLSQKYGTKFQVGN 

AM2-60       TTIGPKLGAYIAFHSYSQLMLLPYGYSSSHLDNYQDLYNVGVKAASSLSQKYGTKFQVGN 

AM2-51       TTIGPKLGAYIAFHSYSQLMLLPYGYSSSHLDNYQDLYNVGVKAASSLSQKYGTKFQVGN 

L4-60        TTIGPKLGAYIAFHSYSQLMLLPYGYSSSHLDNYQDLYNVGVKAASSLSQKYGTKFQVGN 

AM3-75       TTIGPKLGAYIAFHSYSQLMLLPYGYSSSHLDNYQDLYNVGVKAASSLSQKYGTKFQVGN 

AM1-72       TTIGPKLGAYIAFHSYSQLMLLPYGYSSSHLDNYQDLYNVGVKAASSLSQKYGTKFQVGN 

AM1-30       TTIGPKLGAYIAFHSYSQLMLLPYGYSSSHLDNYQDLYNVGVKAASSLSQKYGTKFQVGN 

AeCPA        TSVQPKISTYLSFHAYSQLMLLPYGHTTEPLDNYDEIMDIGRLAIAKLSERHGTQYKIGN 

BtCPA        KDHG-NFKAFLSIHSYSQLLLYPYGYTTQSIPDKTELNQVAKSAVEALKSLYGTSYKYGS 

           

 

                    370       380       390       400       410       420 

                      |         |         |         |         |         | 

AM1-02       IVELLYVASGGSMDWVKGTFKTPITYTYELRDTGRYGFILPADQIIPSAEETLDSLVTIL 

AM2-60       IVELLYVASGGSMDWVKGTFKTPITYTYELRDTGRYGFILPADQIIPSAEETLDSLVTIL 

AM2-51       IVELLYVASGGSMDWVKGTFKTPITYTYELRDTGRYGFILPADQIIPFAEETLDSFVTLL 

L4-60        IVELLYVASGGSMDWVKGTFKTPITYTYELRDTGRYGFILPADQIIPFAEETLDSFVTLL 

AM3-75       IVELLYVASGGSMDWVKGTFKTPITYTYELRDTGRYGFILPADQIIPSAEETLDSLVTIL 

AM1-72       IVELLYVASGGSMDWVKGTFKTPITYTYELRDTGRYGFILPADQIIPSAEETLDSLVTIL 

AM1-30       IVELLYVASGGSMDWVKGTFKTPITY--YLTNLG----------IL-VDMDLFCQLIKLF 

AeCPA        IAEAIYIASGGSIDWIKGVYKTPIVLCYELRDTGRYGFVLPPDQIIPNSEETLDSIIVIL 

BtCPA        IITTIYQASGGSIDWSYN-QGIKYSFTFELRDTGRYGFLLPASQIIPTAQETWLGVLTIM 

 

 

                    430 

                      | 

AM1-02       QEFDKIKKN-- 

AM2-60       QEFDKIKKN-- 

AM2-51       QEFDKIKKN-- 

L4-60        QEFDKIKKN-- 

AM3-75       QEFDKIKKN-- 

AM1-72       QEFDKIKKN-- 

AM1-30       RPLKKLSTLS- 

AeCPA        EEGEKRGLHVL 

BtCPA        EHTLNNLY--- 
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Figure 3.4. Alignment of TmT1 sequences with predicted trypsins (A) and TmC1 sequences 

with predicted chymotrypsins (B) from T. molitor cDNAs. Shaded sequences represent 

peptides that differ from their homologs in TmT1 and TmC1 

 

                                

 Figure 3.4A 
                        10        20        30        40        50        60 

                         |         |         |         |         |         | 

TmT1                                          IVGGSSISISSVPXQIXLQY--------- 

PM1-83          MKSVLFVVFLVASASAVPPFLRKNSLMPDGRIVGGSSISISSVPWQISLQYYGSHICGGS  

PM2-70          MKSVLFVVFLVASASAVPPFLRKNSLMPDGRIVGGSSISISSVPWQISLQYYGSHICGGS  

PM1-75          MKSVLFVVFLVASASAVPPFLRKNSLMPDGRIVGGSSISISSVPWQISLQYYGSHICGGS  

PM1-95          MKSILFVVFLVASASAVPPFLRKNSLLPDGRIVGGSSISISSVPWQISLQYYGSHICGGS  

PM2-03          MKSILFVVFLVASASAVPPFLRKNSLLPDGRIVGGSSISISSVPWQISLQYYGSHICGGS  

                ***:**********************:********************************* 

 

                        70        80        90       100       110       120 

                         |         |         |         |         |         | 

TmT1            -------------------------------GSGGQVVNVARINQNPSYNDR-------- 

PM1-83          IISANYVVTAAHCTDGLTAGSLTVRAGTSTRGSGGQVVNVARINQNPSYNDRVIDYDISV  

PM2-70          IISANYVVTAAHCTDGLTAGSLTVRAGTSTRGSGGQVVNVARINQNPSYNDRVIDYDISV  

PM1-75          IISANYVVTAAHCTDGLTAGSLTVRAGTSTRGSGGQVVNVARINQNPSYNDRVIDYDISV  

PM1-95          IISANYIVTAAHCTDGLTAGSLSVRAGTSTRGSGGQVVNVARINQNPSYNDRLIDYDISV  

PM2-03                  IISANYIVTAAHCTDGLTAGSLTVRAGTSTRGSGGQVVNVARINQNPSYNDRLIDYDISV  
                ******:***************:*****************************:******* 

 

                       130       140       150       160       170       180 

                         |         |         |         |         |         | 

TmT1            ------------------------------------------------------------ 

PM1-83          LQLSSSLSLGSSVAAVGLPSSSTSWSAGTSVLVTGWGTTTEGSSSLPSALQGVNVQIVSQ  

PM2-70          LQLSSSLSLGSSVAAVGLPSSSTSWSAGTSVLVTGWGTTTEGSSSLPSALQGVNVQIVSQ  

PM1-75          LQLSSSLSLGSSVAAVGLPSSSTSWSAGTSVLVTGWGTTTEGSSSLPSALQGVNVQIVSQ  

PM1-95          LQLSSSLSLGSSVAAVGLPSSSTSWSAGTSVLVTGWGTTTEGSSSLPSALQGVNVQTVSQ  

PM2-03          LQLSSSLSLGSSVAAVGLPSSSTSWSAGTSVLVTGWGTTTEGSSSLPSALQGVNVQIVSQ  

                ******************************************************** *** 

 

                       190       200       210       220       230       240 

                         |         |         |         |         |         | 

TmT1            -------------------------------------------------------NGYPG 

PM1-83          STCSSAYGSGSITDRMLCAGVTGGGKDACQGDSGGPLVVGNVLAGIVSWGYGCARNGYPG  

PM2-70          STCSSAYGSGSNTDRMLCAGVTGGGKDACQGDSGGPLVVGNVLAGIVSWGYGCARNGYPG  

PM1-75          STCSSAYGSGSITDRMLCAGVTGGGKDACQGDSGGPLVVGNVLAGIVSWGYGCARNGYPG  

PM1-95          STCSSAYGSGSITDRMLCAGVTGGGKDACQGDSGGPLVVGNVLAGIVSWGYGCARNGYPG  

PM2-03          STCSSAYGSGSITDRMLCAGVTGGGKDACQGDSGGPLVVGNVLAGIVSWGYGCARNGYPG  

                *********** ************************************************ 

 

                       250       260 

                         |         |          

TmT1            VYSNVPALRSYIQQTAGI 

PM1-83          VYSNVPALRSYFQQTAGI----------- 258 

PM2-70          VYSNVPALRSYIQQTAGI----------- 258 

PM1-75          VYSNVPALRSYIQQTAGI----------- 258 

PM1-95          VYSNVPALRSYIQQTAGI----------- 258 

PM2-03          VYPNVPALRSYIQQPPEYKLFKYLLPLIT 269 

                **.********:**..              
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Figure 3.4B 
                                               10        20        30        40        50        60 
                         |         |         |         |         |         | 

TmC1                                                         IISGSAASKGQFPWQ 

PM4-06          MFHLALLVLCAASALALPAELPLLPGAPPATTSMRYAPFREISGRIISGSAASKGQFPWQ 

 

                        70        80        90       100       110       120 

                         |         |         |         |         |         | 

TmC1            ---------------------------------------------------VTAQASR-- 

PM-06           AALYLTVSGGTSFCGGALISSNWILTAAHCTQGVSGITAYLGVVSLSDSSRVTAQASRVV 

 

                       130       140       150       160       170       180 

                         |         |         |         |         |         | 

TmC1            -----------------------------TISLSSSTLGTGASVTVSGWGR--------- 

PM-06           APSYSSSTLANDIALIQLSTSVATSTNIRTISLSSSTLGTGASVTVSGWGRTSDSSSSIS 

 

                       190       200       210       220       230       240 

                         |         |         |         |         |         | 

TmC1            ------------------------------------------------------------ 

PM-06           QTLNYVGLSTISNTVCANTYGSIIQSGIVCCTGSTIQSTCNGDSGGPLVTGSGTSAVHVG 

 

 

                       250       260       270 

                         |         |         |     

TmT1            ------------GYPSAYTR-----SWISSNAGV 

PM-06           IVSFGSSAGCAKGYPSAYTRTAAYRSWISSNAGV----274 
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Figure 3.5. Phylogenetic tree generated using MEGA 2.1 program. Bootstrap values were 

calculated based on the distance/neighbor-joining method. Protease cDNAs were A) serine; 

B) cathepsin B C) cathepsin L D) carboxypeptidase A. Abbreviations are the same as those 

described in Figure 3. 
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Figure 3.5C 
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Figure 3.5D 
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Figure 3.6. Northern blot analysis of RNA extracted from first-instar larvae (L1), mid-

instar larvae (L2) and late-insatr larvae (L3), pupae and adults, as indicated in the figure. 

Probes specific to selected cDNAs from representative clusters were used for analysis. 

Tentative identification of the gene product is on the right. SP= serine protease homolog; 

SPH = serine protease homolog 
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                      Cluster 

  PM 2-70  tmt1 (trypsin)   1    

  AM1-11        SP        2        

   AM1-62       SPH    3 

  PM4-86     SP       4                   

   PM5-90       SPH    7                                           

   PM4-06  tmc1 (chymotrypsin)     9  

  AM2-68   SP   10                

   PM5-80      SPH   11 

   PM4-54       SPH   13 

   AM4-47       SPH   15 

   PM1-93      SPH    16   

  PM3-37     SP   17  

   L3-34           SP   18                               

   PM2-01 SP   19 

   AM4-18 cathepsin B  22 

   AM3-87         cathepsin B  23 

    AM3-32 cathepsin L  24 

   PM2-27      ubiquitin 
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Table 3.1. cDNAs encoding serine proteases from T. molitor larvae, with characteristics of the predicted petides (contd.) 

 

 Cluster Clone 

ID 

Accession 

Number 

Mature 

Enzyme Mm 

Da  

PI
1
 Signal 

Peptide 

(aa) 

Conserved Residues
2
 

 

TAAHC       DIAL         GDSGGP 

Critical 

Residues
2
 

Putative 

ID
3
 

1 PM1-754 DQ356014 24,423.27 8.26 16  DISV  DGG trypsin 
 PM1-83 DQ356015 26,457.28 8.26 16  DISV  DGG trypsin 
 PM2-70 AY845177 26,424.21 8.26 16  DISV  DGG trypsin 
 PM2-03 DQ356016 25,918.18 8.54 16  DISV  DGG trypsin 
 PM1-95 DQ356017 24,407.21 8.26 16  DISV  DGG trypsin 
2 AM1-11 DQ356022 26,305.82 5.16 16  DVAL  GGD SP 
 AM1-21 DQ356023   9,660.82 8.71 16  missing missing --- SPH 
3 AM1-62 DQ356018 21,794.49 6.16 17  DVAL  G-- SPH 
 AM2-58 DQ356019 25,540.83 6.49 17  DVAL  GSG SP 
 AM3-01 DQ356020 25,227.56 6.85 17  DVAL  GSG SP 
 AM4-75 DQ356021 25,267.58 6.91 17  DVAL  GSG SP 
4 PM4-86 DQ356024 28,154.30 4.27 16 TAGHC DIAV  GAS SP 
 PM5-92 DQ356025 27,671.83 4.21 16 TAGHC DIAV  GGS SP 
5 S3-80 DQ356026 29,177.70 4.64 16 TAGHC DVGL  GGS SP 
6 AM1-01 DQ356027 25,978.36 4.25 16 TAAQC DIGL GDGGAP NFF SPH 
 AM3-26 DQ356028 26,290.43 4.17 16 TAAQC DIGL GDGGAP NIS SPH 
7 PM5-90 DQ356029 26,541.68 4.22 16 TAAQC DIGL GDGGDP NLS SPH 
8 AM4-49 DQ356030 26,073.51 4.26 16 TVAQC DIGL GDGGSP SIT SPH 
9 PM4-065 DQ356031 25,991.02 8.92 16    SGS chymotrypsin 
10 AM2-68 DQ356033 26,294.98 4.52 16 TAGHC DIGL  GAS SP 
 AM4-68 DQ356032 26,464.11 4.52 16 TAGHC DIGL  GAS SP 
 L3-22 DQ356034 26,363.01 4.52 16 TAGHC DIGL  GAS SP 
1Isoelectic point is for the mature enzyme. 
2Only sequences differing from conserved regions are given; critical residues are found in the specificity substrate-binding 
pocket of the enzyme. 
3Identification based on active site residues, as per Perona and Craik (1995) and Ross et al. (2003).  SP = serine proteinase; 
SPH = serine proteinase homolog. 
4All sequences in this cluster have a predicted N-terminus identical to TmT1 (Tsybina et al., 2005). 
5Sequence encodes TmC1 (Elpidina et al., 2005). 
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Table 3.1. cDNAs encoding serine proteases from T. molitor larvae, with characteristics of predicted peptides. 

Cluster Clone 

ID 

Accession 

Number 

Mature 

Enzyme 
Mm (Da) 

pI Signal 

Peptide 
(aa) 

Conserved Residues1 

 
TAAHC       DIAL          GDSGGP 

Critical 

Residues1 

Putative 

ID2 

11 PM4-60 DQ356038 25,848.23 4.54 40  DIGL GDTGGP GFS SP 
 PM5-80 DQ356039 25.871.27 4.62 40  DIGL GTDGGP GFS SPH 
 PM4-36 DQ356040 20,846.71 4.42 40  DIGL VILEDP E-- SPH 
12 PM4-08 DQ356037 27,818.11 4.62 16 TAGQC DVGM GDVGGP GIT SPH 
13 PM4-54 DQ356035 28,063.45 4.59 16 TAGQC DIGM GDVGGP GIT SPH 
 PM4-63 DQ356036 27,253.75 4.74 16 TAGQC DIGM GDVGGP GIT SPH 
14 L4-25 DQ356041 26,828.90 4.82 19  NIGL GDTGSP GIS SP 
15 AM4-47 DQ356042 26,350.40 4.28 17 TAGQC DIGL GDLGSP GIS SPH 
 PM2-57 DQ356043 26,359.35 4.28 17 TAGQC DIGL GDLGSP GIS SPH 
16 PM1-93 DQ356044 25,901.04 4.51 16 TSGSC DIGV GDVGSP GIS SPH 
17 PM3-37 DQ356045 26,598.74 5.08 19  DIGL DGSGSP RIS SP 
18 L3-34 DQ356046 26,962.17 4.64 18 TSAHC DIGL GDSGSP RYS SP 
19 PM2-01 DQ356047 25,933.28 4.42 21 TSGHC DIGL GDTGIP GLQ SP 
20 PM4-31 DQ356048 25,654.70 4.37 21 TSGHC DIGL GDTGSP GLS SP 
21 L4-24 DQ356049 25,656.68 4.37 21 TSGHC DIGL GDTGSP GLS SP 
 S3-72 DQ356050 25,682.71 4.37 21 TSGHC DIGL GDTGSP GLS SP 
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Table 3.2. cDNAs encoding cysteine and metalloproteases from T. molitor larvae, with characteristics of the predicted peptides 

 

 

 

 

 

 

 

 

 

 

Cluster   Cl one   
ID   

Accession  
Number   

Mature  
Enzyme    

Mm (Da)   

pI   Signal  
Peptide    

(aa)   

Active Site  
Residues 1   

Critical  
Residues 1   

Putative   
ID 2   

ID   
22   AM4 - 18   DQ356051   30,680.48   5.41   19   QCEN   HH   cathepsin B   
23   AM3 - 87   DQ356052   33,569.24   4.80   19   QCHN   AH   cathepsin B   
24   AM3 - 32   D Q356053   34,468.89   4.87   16   QCHN     cathepsin L   
  AM4 - 22   DQ356054   34,459.97   5.11   16   QCHN     cathepsin L   
25   AM4 - 72   DQ356055   45,506.49   4.22   -   QCHN     cathepsin L   
26   AM2 - 60   DQ356060   45,234.71   5.01   19   HEH   RRRME   carboxypeptidase A   
  AM1 - 30   DQ356058   43,831.50   5.48   19   HEH   RRRME   carboxypeptidase A   
  AM2 - 51   DQ356061   45,294.58   4.86   19   HEH   RRRME   carboxypeptidase A   
  AM1 - 02   DQ356056   45,246.77   5.01   19   HEH   RRRME   carboxypeptidase A   
  AM1 - 72   DQ356059   44,950.37   4.87   19   HEH   RRRME   carboxypeptidase A   
  AM3 - 75   DQ356057   45,200.46   4.86   19   HEH   RRRME   carboxypeptidase A   
  L4 - 60   DQ356062   45,294.58   4.86   19   HEH   RRRME   carboxypeptidase A   
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Table 3.3. Relative abundance of mRNA transcripts in different developmental stages of Tenebrio molitor larvae. 

 

 

 

 

 

Clone ID Tentative ID
a
 L1

b 
L2 L3 Pupa Adult 

PM2-70  trypsin (tmt1b) 1 0.82 0.42 - 0.23 
PM1-93 SPH 1 0.98 0.54 - 0.47 
PM4-86 SP 1 0.25 - - - 
PM5-80 SP 1 0.80 0.67 - 0.37 
PM4-54 SPH 1 0.84 0.72 - 1.01 
AM1-62c SPH - - 1 - 0.46 
L3-34 SP 1 - - 0.78 1.02 
PM5-90 SPH 1 - - - - 
AM4-47 SPH 1 0.55 0.46 - - 
AM1-11 SP 1 0.21 0.76 - 0.95 
PM2-01 SP 1 0.45 0.24 - 0.32 
PM4-06 chymotrypsin (tmc1a) 1 0.99 0.95 - 0.74 
AM2-68 SP 1 1.06 0.91 - 0.80 
PM3-37 SP 1 1.04 0.90 - 1.11 
AM3-87  cathepsin B 1 0.87 1.04 1.03 1.42 
AM4-18 cathepsin B 1 1.10 0.94 - 1.03 
AM3-32  cathepsin L 1 0.81 1.04 - 1.19 
PM2-22  ubiquitin 1 1.06 1.06 1.10 1.20 
aTentative identification of the gene product.  SP = serine protease; SPH = serine protease 
homolog. 
bRelative intensity (pixels per unit area) of band in each developmental stage divided by 
L1. No expression of RNA is indicated by (-).  L1, L2, and L3 refer to the larval stage, as 
defined in the experimental procedures. 
cExpressed only in late instar larva and adult (value is relative to L3). 
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CHAPTER 4 - EVALUATION OF THE COMPENSATORY 

RESPONSE OF TENEBRIO MOLITOR LARVAE TO DIETARY 

PROTEASE INHIBITORS 

4.1. Abstract 

 

The response of T. molitor larvae to dietary serine and cysteine protease inhibitors was 

investigated. Single inhibitor dietary treatments in larvae did not result in a significant growth 

reduction. However, a significant reduction in the mean weight of 21 day-old larvae was 

observed when larvae were fed a combination of inhibitors. mRNA extracted from gut tissues of 

T. molitor larvae (control and treated) was evaluated for the differential regulation of four 

selected protease cDNAs by real-time qPCR. These cDNAs included tmt1 and tmc1, representing 

the serine proteases trypsin and chymotrypsin, repectively, and cathB and cathL, representing the 

cysteine proteases cathepsins B and L, respectively. Results of experiments demonstrated an 

upregulation of all proteases with either inhibitor. However, the upregulation response was 

increased with the serine protease inhibitors. When larvae were fed a combination of inhibitors, 

an the increase in the upregulation of all four cDNAs was reduced. Results from bioassays and 

gene quantitation studies support the hypothesiss that T. molitor larvae compensate for dietary 

inhibitors through an upregulation of protease genes. Moreover, T. molitor larvae compensate for 

the effect of protease inhibitors via multiple mechanisms.  
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4.2. Introduction 

4.2.1. Protease Inhibitors- Insect Adaptation 

Plants synthesize protease inhibitors (PIs) as a defense against pathogen/pest attack. Early 

observations of the role of PIs in plant protection by Mickel and Standish (1947) indicated that 

larvae of certain insects were unable to develop normally on soybean products. Later research 

hypothesized that the insect can detoxify or develop insensitivity to the toxic products produced 

by the plant. Based on the feeding nature of the insect, the response can be specific or general. 

For example, the adaptive response of the insect can be finely tuned to the biochemical capacity 

of the host, such as insect species that are oligophagous and have a limited range of hosts 

(Rosenthal et al., 1976). Polyphagous insects adapt by more general detoxification mechanisms. 

The mechanisms that insects use to respond to ingested PIs are:  overproduction of endogenous 

enzymes to titre out the effect of plant inhibitors (De Leo et al., 1998); expression of inhibitor-

insensitive enzymes  (Bolter and Jongsma, 1995; Jongsma et al., 1995; Bown et al., 1997; 

Cloutier et al., 2000; Mazumdar-Leighton and Broadway, 2001); expression of inhibitor-

hydrolyzing/degrading enzymes (Michaud et al., 1995; Giri et al., 1998), or all of the above 

(Moon et al., 2004).   

4.2.2. Multiple PI Strategy 

The success of a multi-inhibitor approach to control coleopteran pests was first 

demonstrated in Tribolium castaneum (Oppert et al., 1993).  Since that study, the use of multiple 

PIs to inhibit a full spectrum of gut proteases has been proposed as a strategy to overcome 

protease compensation to PIs in pests (Jongsma and Bolter, 1997; Girard et al., 1998).  In 

support of this hypothesis, the use of a combination of serine and cysteine PIs resulted in 

significant growth retardation and mortality in the larvae of T. castaneum due to the disruption of 

compensation to each inhibitor (Oppert et al., 2003; 2005). Results of the in vitro examination of 

gut proteolytic activity of these T. castaneum larvae suggested that larvae shifted their 

proteolytic enzyme profile when fed inhibitors of either protease class. When both classes of 

proteases were inhibited, larvae were unable to adapt by upregulating other classes of proteases. 
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To further understand the regulatory mechanism underlying the in vitro response, it is necessary 

to look at gene expression in vivo. 

4.2.3. In vitro and in vivo Response to Inhibitors 

Candidate inhibitors for insect control can be identified by studying the effect of 

inhibitors on digestive enzymes, both in vitro and in vivo (Oppert, 2001).  With the advent of 

techniques like real-time quantitative polymerase chain reaction (qPCR), microarray analysis, 

and RNA interference (RNAi), the in vivo studies of protease gene regulation and gene 

expression are possible. Results from high-throughput DNA microarray experiments (Moon et 

al., 2004) indicated that insects were able to modulate the expression of numerous genes to 

overcome the effects of plant PIs. Bown et al. (2004) suggested that the insect is not only able to 

call upon a large number of protease-encoding genes, but also is capable of regulating the 

expression differentially when PIs are introduced into the diet. Bown et al. (2004) proposed a 

model that H. armigera larvae would respond to potent inhibitors by the production of 

insensitive proteases, but that inhibitors with lower affinity for insect proteases would not invoke 

this response. This type of compensation was proposed to result in a more successful adaptation 

of the insect to PIs with a lessened metabolic cost The apparent complexity in the insect protease 

response to dietary PIs requires a careful understanding of the overall response in vitro and in 

vivo.  

4.2.4. Real-time qPCR in Gene Expression Fold Change Determination 

A number of insect studies have incorporated real-time qPCR. Mahroof et al. (2005) 

determined a 1.7-4.3-fold increase in the expression of heat-shock transcripts in heat-shocked T. 

castaneum adults and larvae. Differences in mRNA levels of trypsin-like proteases between 

resistant and susceptible strains of O. nubialis were demonstrated by Li et al. (2005) using real-

time qPCR. Another study by Clermont et al., 2004 demonstrated the induced expression of an 

insect metalloprotease inhibitor by a humoral immune response in G. mellonella larvae using 

real-time PCR.  

The goal of this study was to evaluate the response of T. molitor larvae to dietary PIs, 

either singly or in combination, by bioassay and real-time qPCR.  
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4.3. Materials and Methods 

4.3.1. Inhibitors 

The inhibitors used in this study were the cysteine PI, L-trans-epoxysuccinylleucylamide 

[4-guanidino] butane (E-64; Roche Applied Science, Indianapolis, IN, USA) and soybean trypsin 

inhibitor (STI, Kunitz; Sigma Chemical Co., St. Louis, MO, USA). The inhibitors were used 

singly or in combination in the preparation of diets for three treatments. The control diet was 

without inhibitor. The doses of the three treatments were as follows: 1% STI, 0.1% E-64 and 1% 

STI+0.1% E-64.  

4.3.2. Insect Bioassays 

Adult T. molitor derived from a laboratory culture reared continuously on 95% whole 

wheat flour mixed with 5% Brewer’s yeast, were isolated and reared collectively in a jar kept at 

28°C and 75% RH. Flour was sieved regularly to obtain eggs that were collected in a Petri dish 

and placed in a salt chamber at 28°C and 75% RH. Neonates (Figure 4.1) were transferred to 

diets, 15 larvae per treatment, contained in 4 oz cups. 

4.3.3. Preparation of Treatment Diets 

A stock diet was prepared with 1.42 g of whole-wheat flour and 0.071 g of Brewer’s 

yeast. A total of 320 mg of stock diet was prepared and was aliquoted per treatment. Treatment 1 

contained 320 mg only stock diet with no inhibitor and served as the control. Treatment 2 (1% 

STI) included 3.30 mg of STI per 337 mg of stock diet. Treatment 3 (0.1% E-64) included 0.364 

mg of E-64 to 364 mg of stock diet. The combination inhibitor treatment 4 (0.1% E-64 + 1% 

STI) contained 0.372 mg of E-64, 3.70 mg of STI, and 370 mg of stock diet.  

4.3.4. Larval Weight Measurement 

Larvae were weighed individually on a Mettler Toledo microbalance (UMX) (Mettler 

Toledo Inc., Columbus, OH). Weight data were recorded on the 7th, 14th and 21st day post 

hatch. On day 21, larvae were dissected, and guts were collected for RNA isolation. 
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4.3.5. Statistical Analysis 

The design of the experiment was a randomized complete block design with repeated 

measures. A mixed-model analysis was conducted using treatment, time (days post-hatch), and 

their interaction were as fixed effects, and replicated as random effects. Time was also a repeated 

measures factor. Models were fit assuming numerous standard structures for the serial 

correlation, and the best fitting model was selected using Akaike’s Information Criterion (Littell 

et al., 1996; Guerin and Stroup, 2000). F-tests for fixed effects and t-tests for pairwise 

comparisons were performed based on chosen correlation structure (Littell et al., 1996). All tests 

used a 0.05 type I error rate. All computations were done using PROC MIXED in SAS (SAS 

Institute, 2001). Larval weight data was subjected to ANOVA using PROC GLM of SAS (SAS 

Institute, 2001).  

4.3.6. Isolation of RNA 

The anterior and posterior ends of guts from 8 larvae of each treatment were dissected, 

and the gut was pulled out with forceps and placed into a solution of DEPC-water. The guts were 

dried on filter paper and immediately transferred to 100 µl of TRIReagent™ (Molecular 

Research Center, Inc., Cincinnati, OH). Total cellular RNA was extracted from dissected gut 

tissue according to the procedure provided by the manufacturer. Pooled guts were homogenized 

and incubated for 5 min. at room temperature (RT). To extract RNA, 20 µl of chloroform was 

added and mixed vigorously. The sample was incubated for 2-15 min at RT, and then was 

centrifuged at 12,000 x g for 15 min.  The supernantant was then transferred into a new tube and  

24 µl of isopropanol was added to each tube, mixed, and incubated for 10 min at RT. Samples 

again were centrifuged at 12,000 x g for 8 min. The precipitated RNA pellet was washed in 70% 

DEPC-ethanol and centrifuged at 7,500 x g for 5 min. The pellet was air-dried for about 30 min 

and was dissolved in 20 µl of DEPC water. RNA samples were stored at -80°C.  RNA samples 

were subjected to electrophoresis in an agarose gel to check for RNA quality. In order to ensure 

the absence of genomic DNA contamination, 2 ul of each RNA sample was amplified by PCR 

using gene-specific primers for tmt1. The amplified products were analyzed on a 2% agarose gel 

containing ethidium bromide.  RNA samples were treated with RNAase-free DNase I (Epicentre 

Technologies, Madison, WI) following the manufacturer’s protocol. To 4 µl of the RNA sample, 

0.5 µl of RNAase-free DNase I was added and incubated at 37°C for 20 min.  Following 
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DNAase treatment, four DNAase-treated RNA samples were reverse transcribed using 

SuperScript™ III Reverse Transcriptase (RT) (Invitrogen, Carlsbad, California). 0.5 microliters 

of oligo-dT and dNTP were added to each tube and incubated at 65°C for 5 min. Samples were 

then placed on ice for 2 min. To each of the four samples, 1 µl of 10xRT buffer containing 2 µl 

of 25mM MgCl2, 1 µl of 0.1 mM DTT and 0.5 µl of RNase Out was added. The contents of the 

tube were mixed and incubated at 45°C for 2 min. After adding 0.5 µl of SuperScript™ III 

Reverse Transcriptase, samples were incubated at 45°C for 50 min for cDNA synthesis. Samples 

were then incubated for 5 min. at 85°C.The tubes were then placed on ice for 2 min, centrifuged, 

treated with RNase H and incubated at 37°C for 20 min. Single-stranded cDNA samples were 

used for real-time qPCR. The concentration of the first-strand cDNA was determined by a 

Nanodrop ND1000 spectrophotometer (NanoDrop Technlogies, Roackland, DE, USA).  A 

comparison of the absorbance at 260/280 nm was used to determine the purity of the samples. 

4.3.7. Primer design for Real-time qPCR 

Three sets of primer pairs were designed by Beacon Designer software (PREMIER 

Biosoft International) for selected cDNA sequences representing T. molitor trypsin, tmt1 (PM2-

70), chymotrypsin, tmc1 (PM4-06), cathepsin L, cathL (AM3-32), cathepsin B, cathB (AM3-87) 

(Table 4.1). Primer melting temperatures were Tm 56-58°C and amplicons < 150 bp in length.   

A cDNA encoding an alpha-tubulin (AM4-80) normalizer gene was selected and primers were 

similarly designed. The specificity of each primer pair to a template was tested before gene 

amplification. Plasmids containing full-length transcripts of each cDNA were used to establish 

standard curves and determine their copy numbers in samples.  A serial 10-fold dilution of 

cDNA samples was prepared, and six different dilutions in three technical replications were used 

to establish standard curves.  

4.3.8. Real-time qPCR 

Real-time qPCR was performed to study the up and down regulation of selected protease 

cDNA sequences in guts of larvae that were treated with single and combination inhibitor 

treatments, with an Mx3000P QPCR system (Stratagene, La Jolla, CA) and a 25-µl reaction 

using a 2X Brilliant® SYBR® Green QPCR Master Mix kit (Stratagene, La Jolla, CA). After 

preliminary experiments to optimize the reaction, a range of DNA concentrations, from 0.4-1.7 

ng to 10.0 fg (equivalent to 3.30-4.0×109 to 3.3-4.0×104 copies per reaction mixture) was 
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utilized to generate a set of standard curves for each PCR. PCR amplification included 1.0 µl of 

each forward and reverse primer (concentration of 10pmol/µl), 12.5 µl of 2X SYBR Green 

Brilliant qPCR Master Mix, and 2 µl cDNA template diluted to 10.5 µl. The PCR cycle was: 

denaturation at 95° C for 600 sec; 45 cycles of 95°C for 30 sec, annealing at 55°C for 60 sec, 

72°C for 30 sec for final extension. Melting curve analysis determined the primer-dimer 

formation of gene-specific primers. Melting curves were obtained by increasing the temperature 

from 55 to 95°C (0.5°C/10 s) to denature double-stranded DNA. Experiments had three technical 

replicates.  In gene expression experiments, the PCR cycle was run following the same program 

as mentioned above, and 12.5 µl of 2X SYBR Green Brilliant qPCR Master Mix, and 2 µl cDNA 

template diluted to 10.5 µl 50 x diluted cDNA template was used.   

4.3.9. Calculation of Fold Change Level 

Mx3000P software was used to calculate fold change level, but relative quantitation also 

was calculated using a comparative Ct method developed by Liu and Saint (2002):  

(1+ EGOI )
-∆∆Ct  where GOI is the gene of interest, E is the primer efficiency of the gene of 

interest, and ∆∆Ct is the difference between the ∆Ct of the gene of interest and ∆Ct of the 

housekeeping gene [(Ct of GOI for treated-Ct of GOI for control) – (Ct of normalizer gene for 

treated- (Ct of normalizer gene for control)].  

4.4. Results 

4.4.1. Bioassays 

Mortality was negligible and ranged from 6 to 13% in the control (no inhibitor) and 6% 

on the single inhibitor treatments (1% STI and 0.1% E-64). There was no mortality recorded in 

the combination inhibitor treatments. 

The physical appearance of T. molitor larvae indicated the differential effects of 

inhibitors on larval growth (Figure 4.2). Larvae fed the combination of PIs (1% STI + 0.1% E-

64) were smaller in size and were quivering when observed on day 21, when larvae were 

dissected. This combination of inhibitors resulted in a growth retardation similar to that observed 

in earlier studies of T. castaneum larvae (Oppert et al., 1993, 2003). However, the larval 

quivering suggested that physiological effects of the inhibitor also involve the impairment of 

other physiological factors, such as the nervous system.  
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Statistical analysis revealed a significant effect of all four treatments on larval weights 

(F= 29.71; df=3,6; P=0.0005). There was a significant effect of time (days post hatch) on T. 

molitor larval weights (F=97.97; df=2, 7.7; P<0.0001). There was also a significant interaction of 

treatment and time on larval weights (F=5.28; df=6, 7.74; P=0.01). In a comparison of treatment 

means, at day 21, there was no significant difference between weights of larvae fed control and 

1% STI (t =2.17; df=5.24; P=0.08), control and 0.1% E-64 (t=1.47; df=5.24; P=0.20). However, 

at day 21, there was a highly significant difference in weights of larvae fed control and the 

combination inhibitor treatment (t=7.36; df=5.24; P=0.0006). A significant difference was also 

seen between 1% STI and the combination treatment (t= 5.93;df=22; P<0.0001) and 1% E-64 

and the combination inhibitor treatment (t=6.82; df=22; P<0.0001). There was a significant 

interaction of the components of the combination treatment (1% STI and 0.1% E-64) with each 

other (F= 7.00; df= 1,6.1; P= 0.03). This result indicated a synergistic action of STI and E-64 in 

reducing larval weights. At day 21, the difference in T. molitor larval weights between larvae fed 

control and single inhibitor diets and those fed the combination inhibitor treatment was most 

pronounced (Figure 4.3, Table 4.2). Overall, single inhibitor treatments resulted in a weight 

reduction of 30% or less, whereas the combination inhibitor treatment caused a 55-70% 

reduction in weight (data not shown).  

4.4.2. Standard Curves for Real-time qPCR 

The standard curveof the linear relationship between Ct and initial amounts of cDNA 

allows the determinations of concentrations of unknowns based on their Ct values (Wong and 

Medrano, 2005). Standard curves were obtained for all four protease transcripts as well as for the 

housekeeping/normalizer gene (graphs not shown). The log-linear phase is the period where PCR 

reaches optimal amplification with the PCR product doubling after every cycle, in ideal reaction 

conditions. A log-linear regression plot, where Ct values were plotted as a function of log10 

concentration of the template, was generated using Ct values. Relative quantitation involves a 

comparison between the sample cDNA of the gene of interest to that of the control/normalizer 

gene. Relative quantitation usually requires that PCR efficiencies of all genes be similar or 

preferably at or above 90%. The standard curve for alpha-tubulin demonstrated a PCR efficiency 

of 103.6% and a r2 of 0.994. A correlation coefficient greater than 0.99 is a measure of good 

primer efficiency and is one prediction of a successful real-time experiment. The PCR 
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efficiencies for the amplification of tmt1, tmc1, cathB and cathL were tested in five 10x serial 

dilutions of larval cDNA template, and resulted in 100.3% efficiency for tmt1, 96.2% for tmc1, 

99.7% for cathB and 96.3% for cathL. Regression slopes were equal to  -3.315 for tmt1, -3.238 

for alpha-tubulin, -3.416 for tmc1, -3.329 for cathB, and -3.414 for cathL. A melting curve 

analysis indicated no evidence of the formation of primer-dimers in any of the primers tested.  

4.4.3. Relative Fold Change Level 

Following the method developed by Liu and Saint (2002), the amplification efficiency of 

an individual reaction was calculated from the kinetics of the reaction and was used for 

quantitation and normalization. This method is especially useful when the amplification 

efficiencies of reference and target gene are not equal to 1. In the gene expression experiment, 

the differential expression levels of tmt1, tmc1, cathB and cathL were normalized using alpha-

tubulin as the housekeeping gene in 21-day old larvae that were fed single or combination 

inhibitor treatments. Results in Figure 4-4 indicate that when larvae were fed 1% STI (expected 

to inhibit T. molitor tryspin), tmt1 was up regulated ~6 fold, tmc1 ~5-fold, cathB 4.5 fold, and 

cathL ~15 fold. All four selected proteases assayed were up-regulated compared to the activity of 

the same proteases in larvae on control diets. T. molitor larvae that were fed treatment 2 (0.1% E-

64) up-regulated tmt1 1.1 fold, tmc1 2 fold, cathB 1 fold and cathL 5 fold. Larvae fed both 1% 

STI and 0.1% E-64 had less than a 1 fold up-regulation of tmt1, tmc1 and cathB, and a 1.4 fold 

upregulation of cathL. 

4.5. Discussion 

Results of the larval feeding inhibitor bioassay as well as those of the real-time qPCR 

experiments support the hypothesis of a multiple-inhibitor approach to control tenebrionid pests. 

There was a synergistic growth retardation effect in T. molitor larvae that were fed both 0.1% E-

64 and 1% STI, as measured by the mean weight of larvae. In contrast, there were minimal 

growth effects in larvae that were fed single inhibitors.  

From the anecdotal observation of T. molitor larvae, in addition to negative effects on 

survival and growth, the combination of inhibitors fed to T. molitor larvae affected general larval 

fitness and metabolism. Other studies of the effects of inhibitors on insect physiology have 

reported adverse effects on reproduction (Ashouri et al., 1998), learning (Pham-Delègue et al., 

2000), diapause, and digestion (Cloutier et al., 2001). One hypothesis is that the quivering of 
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larvae resulted from a nervous system malfunction or diversion of energy for the physiological 

compensation response.  

Real-time qPCR results indicated that insects were able to use more than one mechanism 

to compensate when fed either serine or cysteine PIs. T. molitor larvae upregulated serine 

proteases when fed STI, a serine PI. When fed E-64, a cysteine PI, larvae had a 5 fold 

upregulation of cathepsin L. These results indicated that 21 day-old larvae fed single serine or 

cysteine inhibitors use the hyperproduction of proteases from the same protease class as the 

inhibitor to ‘titer out’ the inhibitor molecules. However, larvae fed single inhibitors also appear 

to upregulate proteases from other classes.  

There was a 15 fold upregulation of cathepsin L in T. molitor larvae in response 1% STI, 

and a 2 fold upregulation of chymotrypsin when larvae were fed 0.1% E-64. This result is similar 

to the results observed by Oppert et al. (2005) in T. castaneum larvae fed E-64, where larvae 

responded by increasing chymotrypsin activity. Additionally, the normal insect gut function was 

effectively disrupted by a combination of inhibitors targeting multiple protease classes. Three-

week old larvae (3rd instar) were a vulnerable life stage of T. molitor that can be targeted for 

future pest control strategies.  This was the first study to report the relative quantitation of 

changes in gene expression in insect larvae that were fed dietary inhibitors.  

The results of this study have implications in the control of tenebrionid and other 

coleopteran stored-product pests. The multiple-inhibitor approach can be adopted as an improved 

method for pest management based on PIs. Suitable proteinaceous inhibitors are needed for 

transgenic technology, and cost effective inhibitors for sprays and powder treatments are needed.  

Further studies also are required before the effective doses of inhibitors can be recommended for 

use by entomologists involved in the development of plant resistance based on protease 

inhibitors. 
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Figure 4.1. T. molitor eggs and newly emerged neonates (1
st 

instar ) larvae used to infest 

treatment diets. 
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Figure 4.2. Contrast of T. molitor larvae fed a combination of 1% STI and 0.1% E-64 with 

those fed either 1% STI or 0.1% E-64 or control diet (no inhibitor). 
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Figure 4.3.  A comparison of the weights of T. molitor larvae fed control, 1% STI, 0.1% E-

64, or 1% STI + 0.1% E-64 at 7, 14 and 21 days post-hatch. Weights are the mean + S.E., 

n=15. 
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Figure 4.4. Real-time quantitative PCR analysis of the relative quantitative fold change 

expression of two T. molitor serine protease trascripts, tmt1 and tmc1 and two cysteine 

protease transcripts, cathB and cathL in guts of 21-day old larvae fed on diet containing a 

single inhibitor (1% STI or 0.1% E-64) or a combination of inhibitors (1% STI+0.1% E-

64). 
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Table 4.1. Primer names, sequence IDs and nucleotide sequences of selected T. molitor 

digestive protease cDNAs. Primers were designed using a computer program, Beacon 

Designer (version 2.1, Premier Biosoft International, Palo Alto, CA). 

 

Primer ID Plasmid 

cDNA ID 

Forward primer sequence 

(5’-3’ direction) 

Reverse primer sequence 

(5’-3’ direction) 

Amplicon 

length 

α-tubulin  AM4-80 GCCGACTTCTTCGTAATCCTTC TCCAACACCACCGCCATC 174 

tmt1  PM2-70 GCGGCGGTTCAATAATCAG ACGAGTAGAAGTTCCAGCAC 104 

tmc1 PM4-06 CCTCATCCAACTCTCCACTTC ACTGTCGCTGGTCCTTCC 124 

cathB AM3-87 ACGGCAGTAACGACTATGTG TGAAATCCAACGCTCTCTCC 107 

cathL AM3-32 CTGGTGCCGTTGAAGGTC CCGTAGTCGTGGATGTAGC 151 
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CHAPTER 5 - SUMMARY 

Protease inhibitors are an important component in the multi-mechanism insect defensive 

strategy employed by many plant species.  Since the insect-plant interaction is a co-evolving 

process, combating insect damage to plants, processed food, and stored food is an ongoing 

challenge. The continual adaptation of insects to plant defenses has been a major research focus 

for many years. Insects employ many types of mechanisms to compensate for the detrimental 

effects of protease inhibitors. The rationale for this project was to evaluate insect compensation 

to protease inhibitors and to understand the compensatory mechanism in the response of T. 

molitor larvae to dietary protease inhibitors.  

Enzyme assays described in chapter 2 indicated a diversity of proteases in T. molitor 

larvae, as has previously been reported. Proteases from the serine and cysteine classes were 

identified by inhibitor assays. Interestingly, the inhibition of protease activity in T. molitor gut 

extracts by a trypsin inhibitor, SBTI, was lessened when the experiments were conducted in 

reducing buffers, conditions that favor cysteine protease activity. Terra and Cristofoletti (1996) 

suggested that the Cucujiformia ancestor was a beetle that adapted to naturally occurring serine 

protease inhibitors by shifting from serine to cysteine proteases for digestion.  T. molitor has 

retained serine protease activity and may represent an evolutionary intermediate.  However, 

compartmentalization of the T. molitor midgut occurred because cysteine proteinases were 

unstable at higher pH found in the posterior midgut, and they are localized to the anterior midgut 

where they are most active.  This compartmentalization also serves as a regulatory mechanism, 

in that any cysteine protease activity that migrates to the posterior midgut with the food bolus is 

inactivated.  Compartmentalization of proteases in T. molitor is especially relevant when insects 

are fed serine protease inhibitors. If T. molitor is fed a single serine protease inhibitor, T. molitor 

cysteine proteases in the anterior midgut can hydrolyze serine protease inhibitors prior to their 

contact with serine proteases, thus preventing serine protease inhibition. The acidic pH of the 

anterior midgut also may contribute to the instability of serine protease inhibitors. However, if a 

cysteine protease inhibitor (E-64) in combination with a serine protease inhibitor is fed to T. 

molitor larvae, the cysteine protease inhibitor will target the anterior midgut cysteine proteases 
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and prevent hydrolysis by anterior cysteine proteases, and the effects of the serine protease 

inhibitor will be more substantial.  

The information obtained from the cDNA libraries of T. molitor larval guts comprised a 

an important aspect of this study. Of the 1,528 total gut cDNA sequences, 92 (7%) were 

identified that encode digestive proteases in T. molitor larvae.  When the sequences were 

grouped into serine, cysteine or metallo proteases, 73% of the cDNAs that encoded proteases 

were homologous to serine proteases, 13% were homologous to cysteine proteases and 14% were 

homologous to metalloproteases. Of 50 full-length cDNA sequences that were submitted to 

GenBank, none encoded aspartic proteases.  

Compartmentalization of serine and cysteine proteases in the posterior and anterior 

midgut, respectively, was examined by relative transcript abundance. Most serine protease 

transcripts were present in the posterior midgut cDNA library, while most cDNA encoding 

cysteine proteases were identified in the anterior midgut library. The distribution of these cDNAs 

indicated that serine proteases are the most diverse class of proteases in the T. molitor midgut, 

although the relative activity may be different. Sequence alignment of the cDNAs encoding 

serine proteases helped detect the presence/absence/variation in the sequence motifs that typify 

serine proteases- TAAGC, DIAL and GDSGDP. T. molitor cDNAs that had the serine residue in 

the active site motif substituted with threonine were tentatively classified as serine protease 

analogs, although their function as an active protease remains to be tested. Serine protease 

homology (SPHs) lacked one or more of the serine protease critical residues, and there were 

atleast 14 T. molitor cDNAs that encoded putative SPHs.  We hypothesize that, in addition to the 

previously proposed functions of SPHs in various defense responses, including hemolymph 

coagulation, melanotic encapsulation, induction of peptide antimicrobial synthesis and activation 

of cytokines (Kanost et al., 2001; Jiang and Kanost, 2000), the SPHs expressed in the T. molitor 

gut participate in the compensational response to dietary fed protease inhibitors.  If SPHs are 

expressed constitutively, or they are upregulated in response to serine protease inhibitors, they 

may bind to inhibitors with higher affinity and prevent the harmful targeting of active serine 

proteases.  This hypothesis remains to be tested. 

T. molitor cysteine proteases included cathepsin B and cathepsin L types. All T. molitor 

cDNAs encoding cysteine proteases, except AM4-72, had secretion signal peptides, an indication 

that these proteases originate in the membrane and are processed to the lumen by protease 
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activation. This study complements that of other researchers who have identified and localized 

cathepsin L cDNAs and proteins (Cristofoletti et al., 2005; Vinokurov et al., 2006b). This is the 

first study to report cDNAs encoding carboxypeptidase A from T. molitor.  All of the T. molitor 

carboxypeptidase sequences had predicted signal peptide sequences and had homology to Aedes 

aegypti carboxypeptidase A and were members of the clan MC and family M14 metallopeptidase 

family. 

Another significant finding of this study was the identification genes encoding major 

midgut proteolytic enzymes, trypsin (tmt1a, tmt1b, and tmt1c) and and chymotrypsin (tmc1). The 

predicted N-termini of these sequences were identical to the N-termini of the purified proteins 

(Tsybina et al., 2005; Elpidina et al., 2005).  Phylogenetic analysis of the T. molitor serine 

protease sequences revealed two distinct groups separated by sequences identified as SPHs. 

Based on the identification of tmt1a, tmt1b, tmt1c, and tmc1a, located in different areas of the 

tree, the structural distinction that contributes to T. molitor trypsin and chymotrypsin may be 

revealed by intervening sequences.  

Expression analyses using northern blots demonstrated the temporal regulation of 

proteases in T. molitor. In general, proteases were most highly expressed in early-instar larvae, 

suggesting targeting early-instar larval stages with protease inhibitors may be more effective as a 

pest control strategy. This comprehensive information on the protease distribution and 

expression patterns in the midgut of T. molitor will impact improvement and development of 

pest control methods based on protease inhibitors. 

In chapter 4, the individual and combined effects of STI, inhibiting serine proteases, and 

E-64, inhibiting cysteine proteases, was determined in in vivo assays. Weights of larvae fed 

either STI or E-64 were no different than weights of larvae fed control diet at 21 days post-

infestation. However, the combined effect of these inhibitors significantly reduced T. molitor 

larval weights, suggesting that the larval digestive system is unable to compensate for the effects 

of inhibitors in two different classes of proteases.  

These results support the hypotheses that larvae that are fed single inhibitors are able to 

regulate protein digestion by up-regulating proteases from another protease class, but are unable 

to compensate when fed multiple inhibitors. This hypothesis was further supported by results of 

real-time qPCR analyses, which demonstrated that insects use more than one mechanism to 

compensate when fed inhibitors of either serine or cysteine protease class. When fed E-64, larvae 
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had a 5 fold upregulation of the target protease, cathepsin L, indicating that larvae use the 

hyperproduction/overproduction of proteases from the same protease class as the inhibitor to 

compete with the inhibitor molecules. The results also indicate that T. molitor larvae upregulate 

proteases from another inhibitor class, which supported the hypothesis that T. molitor larvae 

upregulate cysteine proteases when fed serine protease inhibitors and serine proteases when fed 

cysteine protease inhibitors. However, this hypothesis was not entirely supported, because in our 

experiments, T. molitor larvae upregulated proteases from two different classes simultaneously 

in response to dietary inhibitors. Nevertheless, we conclude that the normal insect gut function is 

effectively disrupted when larvae were fed a combination of inhibitors targeting multiple 

protease classes. This is the first study to report relative quantitation of fold changes in gene 

expression in insect larvae fed dietary inhibitors.   

5.1. Practical Implications and Application  

The results of this study have implications in the control of tenebrionid and other 

coleopteran stored-product pests. The multiple-inhibitor approach can be adopted as an improved 

method for pest management based on protease inhibitors. Further studies are required before the 

effective dose of inhibitors and the appropriate combination of inhibitors can be recommended 

for use by entomologists involved in crop improvement through plant resistance. Three-week old 

larvae (3rd instar) appear to be the lifestage of T. molitor that can be targeted for future pest 

control strategies. 

It is a well-known fact that the high complexity of protease/inhibitor interactions in and 

the diversity of proteolytic enzymes used by pests need to be considered in order to make the 

right choice of the appropriate protease inhibitor. A thorough and detailed understanding of the 

biological system of the insect by assessment is critical to the selection of suitable for pest 

control. Understanding the molecular and genetic basis of plant resistance and insect counter-

defense is imperative, not only for a basic science perspective but also for a biotechnology-based 

control practice (Zhu-Salzman et al., 2003). Hence, this study was designed to study, in a 

comprehensive manner, the transcriptional protease profile in the midgut of T. molitor.  

5.1.1. Testing Effect of Other Inhibitors in vitro and in vivo 

An immediate application of the techniques developed in our research would be the in 

vitro and in vivo testing of several commercially available inhibitors for T. molitor digestive 
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response. These studies can be extended to other coleopteran insects (already studied in T. 

castaneum) as well as phytophagous insects from other insect orders. Northern blots and real-

time PCR can be further used to provide expression profiles of different proteases in response to 

dietary protease inhibitors. 

5.1.2. Application in Transgenics-Concerns and Considerations 

One major method of applying inhibitor-based plant resistance is to pyramid multiple 

protease inhibitor genes into plants. Numerous laboratory studies have tested the development of 

pest-resistance programs based on inhibitor expression in transgenic plants and their impact in 

turn on non-target organisms (Alfonso-Rubi et al., 2003; De Leo et al., 1998; Irie et al., 1996). 

Protease inhibitors have also been used in conjunction with other genes that target several 

physiological and biochemical processes. 

Lawrence and Koundal (2004) compiled a list of the many PIs used to create transgenic 

crop plants and inhibitors isolated from plants with divergent modes of action against different 

species. Integrating transgenes of interest flanked by vector sequences usually requires a 

promoter to drive the expression of the protease inhibitor. An ideal promoter needs to be 

selected, based on its responsiveness to the invasion of the host plant by a pest, or based on 

regulation by inducers just prior to pest attack. Promoters should be sufficiently active to mediate 

a substantial defense, and localized to the site of pest invasion. The identification of suitable 

promoters can be achieved by using promoter-trapping techniques (Babiychuk et al., 1997).  

However, the general usefulness of recombinant protease inhibitors in plant protection 

has yet to be demonstrated. Using one or more genes in combination, whose products target 

several physiological and biochemical processes in the insect appears to be a possibility. In 

addition to PI genes, lectins, alpha-amylase inhibitors, cholesterol oxidases, peroxidases, spider 

venom, avidins, agglutininins, ribosome-inactivating proteins can be engineered into plants 

(Corbin et al., 1994; Dowd et al., 1998; Down et al., 1996; Fitches et al., 2002; Huang et al., 

2001; Ishimoto et al., 1996; Kramer et al., 2000; Yao et al., 1996; Zhou et al., 2001). The use of 

proteinase inhibitors not only would help in pest control, but also in protecting plants from 

fungal, viral and bacterial pathogens.   

Another major concern in expressing protease inhibitors in transgenic plants would be the 

effect of protease inhibitors on non-target herbivores. Cowgill and Atkinson (2003) provided a 
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method to a sequential approach to risk management of transgenic plants expressing protease 

inhibitors. A tiered approach similar to that used to test the effect of pesticides on beneficial 

organisms was adapted to test the direct effects of plants expressing protease inhibitors on 

nontarget herbivorous insects. Such nontarget effects can be evaluated by designing experiments 

to identify hazard, determine levels of exposure and assess if the hazard constitutes a risk. 

5.2. Suggestions for the Future 

Future experiments can be directed toward testing the effect of several other inhibitors 

besides STI and E-64. Bioassays can be extended for a longer period of time to watch for 

potential behavioral, physiological changes manifested by the insect over time. It would be 

interesting to study the phenotypic effects in adult T. molitor that have been reared on inhibitor 

diets.  

There is a need to verify if the inhibitors, in addition to blocking the enzymes directly by 

binding to them, bind to a chitin column of the peritrophic membrane in the T. molitor midgut. 

Studies by Sale et al., (2001); Macedo et al., (2002, 2004) have demonstrated that a protease 

inhibitor also binds to a chitin column and to chitinous structures in the midgut of the insect. 

Immunoblotting may be one method to use to demonstrate the presence or absence of binding of 

inhibitor to the protease inhibitors.  

Microarray analyses, dot blot analysis, or northern blot analyses of T. molitor midgut 

gene expression in response to dietary inhibitors also may reveal new enzymes recruited by the 

insect to compensate for reduced digestion. In a study that examined the expression profiling in 

guts of Callosobruchus maculatus fed on a diet containing a cysteine protease inhibitor, a 

significant number of up- and down-regulated genes were described that failed to match any 

sequences that encoded known proteins (Moon et al., 2004). Since the cDNA library in our study 

was isolated from guts of larvae fed control (no inhibitor) diet, transcripts that would be 

upregulated in response to inhibitors may not have been detected. Additional future experiments 

using microarray analysis and northern blots should be conducted to address this question. 

Furthermore, anterior midguts and posterior midguts can be used separately in future analyses to 

study differential up regulation and down-regulation in the compartmentalized midgut 

simultaneously.  



 137

Time-dependant and developmental stage-dependant changes in T. molitor’s response to 

dietary inhibitors may provide more specific clues as to the insects’ use of multiple mechanisms 

or compensation by shifting to another mechanism (Zhu-Salzman et al., 2004). Guts dissected at 

different time points after feeding on inhibitor-treated diets can be assayed to determine the 

proteolytic response of the insect over time. In addition, the responses of different larval stages 

to inhibitors may reveal the most susceptible life stage to target for the application of pest control 

methods based on PIs.  

Protein characterization of the different proteins encoded by the transcripts identified in 

the course of this study is essential and would complement the molecular analysis of protease 

gene expression. The identification of protein isoforms and functional roles played by these 

proteases would be helpful in understanding the overall response of T. molitor to dietary 

inhibitors. Since the cDNA sequences of 50 proteases involved in T. molitor protein digestion are 

now known, dsRNA can be synthesized and used a genomic tool to ascertain the gene’s function. 

Recently, RNAi has been widely used as a tool for probing gene function (Elbashir et al., 2001). 

5.3. Conclusions 

 

In conclusion, the digestive system of the yellow mealworm, T. molitor, was a model to 

explore the complexity of the compensational response of larvae to dietary inhibitors. The results 

from this study provided information on protease genes expressed in the midgut of T. molitor 

larvae, and illustrated the expression patterns of these genes in response to dietary protease 

inhibitors. This study evaluated the efficacy of a multiple inhibitor strategy to control T. molitor 

larval infestation, and the results indicated that a combination of inhibitors that targeted two 

different protease classes (serine and cysteine) contributed to significantly reduced larval 

weights. The molecular analysis suggested that the compensatory response of larvae to inhibitors 

was disrupted by the combination inhibitor strategy. This information can be valuable for the 

application of transgenic protease inhibitors for cereal crop improvement. 
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Appendix A - List of Protease Inhibitors 

 

 

 

 

Inhibitor 

(abbreviated) 

Inhibitor Specificity Concentrataion 

used 
Pepstatin - Aspartic proteases 0.01  mM 

Leupeptin - Serine and cysteine proteases such as 
plasmin, Trypsin, Papain, Cathepsin B 

0.01 mM 

E-64 trans-
epoxysuccinyl-l-
leucylamido-(4-

guanidino) 
butane 

 

Inhibits papain and other cysteine proteases 
like cathepsin B and L 

0.1mM 

PMSF Phenyl methyl 
sulfonyl fluoride 

Inhibits serine proteases(chymotrypsin, 
trypsin and thrombin).Also inhibits cysteine 
proteases such as papain (reversible by DTT 

treatment) 

1 mM 

Aprotinin - Trypsin, Plasmin, Chymotrypsin, kallikerin 0.01 m M 
 

Chymostatin - Specific inhibitor of α-,β-,γ-,δ-chymotrypsin. 0.1 mM 

TPCK L-1-Chloro-3-(4-
tosyl amido)-4-

phenyl-2-
butanone) 

Irreversibly inhibits chymotrypsin. Also 
inhibits many other serine and cysteine 

preteases such as bromelain, ficin, and papain 
 

0.2 mM 

TLCK (L-1-Chloro-3-
(4-tosylamido)-

7-amino-2-
heptanone-HCl) 

Irreversibly and specifically inhibits 
chymotrypsin. Also inhibits many other serine 

proteases such as bromeleain, ficin and 
papain 

0.2 mM 

SBTI Soybean trypsin 
inhibitor 

Inhibits trypsin. Soybean trypsin inhibitor 
also inhibits factor Xa, plasmin and plasma 
kallikerin. Neither inhibit matallo, cysteine, 
and aspartic proteases or tissue kallikerin 

100 grams/ml 

Bestatin [(2S, 2R)-3-
Amino-2-

hydroxy-4-
Phenylbutanoyl]-

L-Leucine 

Competitive inhibitor of aminopeptidases. 
Inhibits aminopeptidases e.g aminopeptidase 
B, leucine aminopeptidase, aminopeptidases 

on the surface of mammalian cells). 

50 µg/ml 

 


