
A SECURITY ARCHITECTURE FOR MEDICAL APPLICATION

PLATFORMS

by

CARLOS SALAZAR

B.S., Kansas State University, Manhattan KS, 2012

A THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2014

Approved by:

Major Professor
Eugene Vasserman

Copyright

Carlos Salazar

2014

Abstract
The Medical Device Coordination Framework (MDCF) is an open source Medical Ap-

plication Platform (MAP) that facilitates interoperability between heterogeneous medical

devices. The MDCF is designed to be an open test bed for the conceptual architecture de-

scribed by the Integrated Clinical Environment (ICE) interoperability standard. In contrast

to existing medical device connectivity features that only provide data logging and display

capabilities, a MAP such as the MDCF also allows medical devices to be controlled by apps.

MAPs are predicted to enable many improvements to health care, however they also

create new risks to patient safety and privacy that need to be addressed. As a result, MAPs

such as the MDCF and other ICE-like systems require the integration of security features.

This thesis lays the groundwork for a comprehensive security architecture within the MDCF.

Specifically, we address the need for access control, device certification, communication

security, and device authentication.

We begin by describing a system for ensuring the trustworthiness of medical devices

connecting to the MDCF. To demonstrate trustworthiness of a device, we use a chain of

cryptographic certificates which uniquely identify that device and may also serve as non-

forgeable proof of regulatory approval, safety testing, or compliance testing. Next, we cover

the creation and integration of a pluggable, flexible authentication system into the MDCF,

and evaluate the performance of proof-of-concept device authentication providers. We also

discuss the design and implementation of a communication security system in the MDCF,

which enables the creation and use of communication security providers which can provide

data confidentiality, integrity, and authenticity. We conclude this work by presenting the

requirements and a high level design for a Role-Based Access Control (RBAC) system within

the MDCF.

Table of Contents

Table of Contents iv

List of Figures ix

List of Tables xi

Acknowledgements xi

Dedication xii

1 Introduction 1

2 Background 7

2.1 ICE . 7

2.2 MDCF . 9

2.2.1 Supervisor Components: . 10

2.2.2 Network Controller Components: . 11

2.2.3 Channel Abstraction . 12

2.2.4 Connection State Machine . 13

2.3 Related Work . 16

3 Certificate Framework 17

3.1 Motivation . 17

3.1.1 Trust Evidence . 18

3.1.2 Public Key Infrastructure . 19

iv

3.2 Requirements . 19

3.3 Design . 22

3.3.1 Root Certificate . 24

3.3.2 Manufacturer Certificate . 24

3.3.3 Device Model Certificate . 25

3.3.4 Device Instance Certificate . 25

3.3.5 Trust Chain Creation . 25

3.3.6 Authentication of Trust Chain . 27

3.4 Certificate Authoring Tool . 28

4 Authentication 30

4.1 Motivation . 30

4.1.1 Requirements . 31

4.1.2 Authentication Hooks . 33

4.1.3 Authentication Providers . 33

4.1.4 Robustness and Resource Allocation 34

4.2 Security Design . 35

4.2.1 Device Authentication Hooks . 35

4.2.2 Authentication Providers . 37

4.3 Evaluation . 39

5 Communication Security 43

5.1 Motivation . 43

5.2 Requirements . 44

5.3 Design . 44

5.3.1 Hooks . 44

5.3.2 Providers . 46

v

5.4 Provider Implementation . 48

5.4.1 NULL Provider . 48

5.4.2 TLS Provider . 48

6 Access Control 49

6.1 Introduction . 49

6.1.1 Background . 49

6.2 Requirements . 53

6.2.1 System Overview . 53

6.2.2 System Context . 55

6.2.3 System Goals . 55

6.2.4 Operational Concepts . 55

6.2.5 External Entities . 59

6.2.6 Requirements for the MDCF Access Control System 60

6.2.7 Requirements for Break Glass System 62

6.3 Design . 63

6.3.1 Level 1: Minimal Implementation . 64

6.3.2 Level 2: Customized Local Security Policy 65

6.3.3 Level 3: Multiple Users . 66

6.3.4 Level 4: More Granularity . 67

7 Conclusion and Future Work 69

7.1 Conclusion . 69

7.2 Future Work . 70

Bibliography 72

A Authentication Framework Performance Data 77

vi

B Role Based Access Control System Use Cases 86

B.1 Use Cases . 86

B.1.1 Normal Operation . 86

B.1.2 Break Glass Mode Operation . 87

B.1.3 User Log In . 88

B.1.4 User Log Out . 89

B.1.5 Device Connects (first time) . 90

B.1.6 Device Disconnects . 91

B.1.7 App Launch . 92

B.1.8 App Close . 93

B.1.9 Issue Command to Device . 94

B.1.10 Enter Break Glass Mode . 95

B.1.11 Exit Break Glass Mode . 96

B.1.12 (Break Glass) Device Connect (Unknown Device) 97

B.1.13 (Break Glass) Device Disconnect . 97

B.1.14 (Break Glass) App Launch . 98

B.1.15 (Break Glass) App Close . 99

B.1.16 (Break Glass) Issue Device Command 100

B.1.17 Create Role . 101

B.1.18 Delete Role . 102

B.1.19 Add Role To User . 103

B.1.20 Remove Role From User . 104

B.1.21 Add Permission to Role . 105

B.1.22 Remove Permission from Role . 106

B.2 Exception Cases . 107

B.2.1 User Log In (Failure) . 107

vii

B.2.2 App Launch (Failure) . 108

B.2.3 App Close (Failure) . 109

B.2.4 Device Disconnects (Failure) . 110

B.2.5 Issue Command To Device (Failure) 111

B.2.6 Exit Break Glass Mode (Failure) . 112

B.3 External Entities . 112

B.3.1 MDCF . 113

B.3.2 DML Metadata . 113

B.3.3 User management system . 113

B.3.4 Supervisor App . 114

B.3.5 Supervisor Console/Operator Interface 114

B.4 Requirements . 115

B.4.1 RBAC System Function . 115

B.4.2 Break Glass System Function . 118

viii

List of Figures

1.1 Security-related threats to MAPs . 3

1.2 Network based attacks on MAPs . 4

1.3 High level MAP security goals . 5

2.1 The primary components of the ICE architecture. External interface, and

patient connected to devices, are omitted. 8

2.2 MDCF components grouped by their logical ICE architecture role. 10

2.3 The MDCF Channel Abstraction. 12

2.4 MDCF Connection State machine, with the outline denoting portions relevant

to connection-time authentication. 14

3.1 FDA’s sample Unique Device Identifier label for medical devices. 18

3.2 ICE certificate chain. Solid lines indicate signing relationships, i.e. the private

key corresponding to the arrow origin is used to sign the certificate to which

the arrow points. The dotted line represents a certificate extension used

to accommodate the additional signature of the Certifying Authority on a

certificate. 21

3.3 MDCF Certificate Authoring Tool – a GUI to streamline certificate creation

for the ICE certificate chain. Pictured is the tab used for creating device

model signing requests. 29

4.1 MDCF components grouped by their logical ICE architecture role and show-

ing primary hook locations (circles a,b,c). 32

ix

4.2 Illustration of the authentication process using the NULL provider. 37

4.3 MDCF resource usage with 340 virtual devices running on a different host. . 41

5.1 MDCF components grouped by their logical ICE architecture role and show-

ing primary hook locations (circles a,b,c). 45

5.2 MDCF channel security providers. 46

6.1 Flat RBAC1 . 50

6.2 Pictured is a context diagram for the RBAC system. 54

x

List of Tables

3.1 Information used to judge the trustworthiness of a device. 22

4.1 Authentication provider (device- and MDCF-side), complexity measured us-

ing lines of code (LOC), and complexity increase from the NULL provider.

NULL is little more than the common infrastructure/scaffolding. The “In-

crease over NULL” column is therefore a more accurate representation of the

code complexity increase of new authentication modules. 40

6.1 High-level goals(G) of the RBAC system . 55

6.2 Summary of use cases . 56

6.3 Summary of exception cases . 57

6.4 Actors in the RBAC system . 57

xi

Acknowledgments

First and foremost, I wish to thank my adviser, Dr. Eugene Vasserman for all of his

guidance and encouragement over the past two years. I also want to thank Dr. John Hatcliff

for the advice and suggestions he has given me and for agreeing to serve on my committee.

I’d like to thank Dr. Xinming Ou for serving on my committee, and also for his mentorship

through the Cyber Defense Club. Furthermore, I want to thank Dr. Dan Andresen for

originally giving me the opportunity to get involved with research and for his work with

Beocat. Finally, I want to thank my friends and family for the support and encouragement

you have given me through the years.

xii

Dedication

For Amy Hickson and J.E Townley.

xiii

Chapter 1

Introduction

Medical Application Platforms (MAPs)2 such as the Integrated Clinical Environment (ICE)

are predicted to enable improvements to health care through the integration and coordina-

tion of heterogeneous medical devices. A MAP provides a common interface to which

devices from different vendors may be connected, and on top of which, medical “apps” may

be developed. Apps on a MAP may receive and display data from one or more devices

also connected to that MAP, furthermore a MAP enables the configuration and control of

devices by apps.

The vision of medical devices in MAPs stands in a stark contrast to the status quo.

Current medical devices are developed in a monolithic, stand-alone manner. They offer

little to nothing in terms of interoperability features. When connectivity is present it is

limited to a unidirectional transmission of device data for logging or display purposes.3

Furthermore, this connectivity is further restricted by a lack of interface compatibility with

components from other manufacturers. The result of this incompatibility is the creation of

vertically integrated systems culminating in a lack of technological diversification.

The Integrated Clinical Environment (ICE) is a ASTM Standard describing a conceptual

architecture of a MAP. As with any MAP, ICE is intended to integrate different medical de-

vices originating from different manufacturers and allow apps to control devices and display

1

their data. ICE components and systems are meant to function in a plug-and-play manner.

The integration of ICE components is designed to be conducted dynamically, on demand

by non-technical users (i.e. clinicians) at the point of care facility.

Consequently, ICE requires a new component-wise regulatory approach. This differs

from existing regulatory practices for medical devices and for other interoperable systems

that rely on a known a-priori configuration assembled by a skilled technical integrator.

Without the new approach to regulation for MAPs, building an ICE-compliant system will

not be feasible.

Although MAPs are thought to be beneficial to patient safety,4,5 they also open the doors

to security-related threats to patient safety and privacy. In Figure 1.1 we have identified

some threats which motivate the need for security features in MAPs. A necessary, but

not sufficient part of mitigating these threats, is protecting against specific network based

attacks (see 1.2).

These attacks are by no means unique to MAPs — they are well known in the context of

other networked and distributed systems. In this regard, the greatest difference between this

and most other systems is that many classes of attacks (e.g. denial of service, man-in-the-

middle) can directly cause harm to a patient on a MAP. In essence, it is impossible to fully

separate the concepts of safety and security when dealing with MAPs. Aside from threats

to privacy and accountability, a security threat in a MAP should be considered a

safety threat.

Aside from network-based attacks, components that do not meet regulatory, safety, or

other compatibility standards have an increased potential to compromise patient safety

through design or implementation problems. These components may also contain back-

doors or software vulnerabilities that constitute a security threat if they are allowed to be

integrated into an interoperable medical system. Furthermore, a MAP also has the poten-

tial to expose sensitive patient data or threaten patient health if someone other than an

authorized clinician is able to access the devices or apps associated with a patient through

2

1. Unauthorized Supervisor Console Access: An individual other than an autho-
rized user (i.e. clinician) who is able to view or gain control of the apps and man-
agement/administrative controls of a MAP will be able to control devices and view
sensitive patient data.

2. Unauthorized or malicious control of a device: Devices that perform some actu-
ation on a patient may be leveraged to directly harm to patients through an improper
actuation, or through the prevention of some necessary actuation. Misconfiguration
of devices might also interfere with delivery of care.

3. Damage to a device: Damage or destruction of a device may prevent necessary
actuations on a patient, or prevent the collection of physiological data, potentially
causing harm the patient.

4. Unauthorized access to patient data: Violation of patient privacy and laws such
as HIPAA.

5. Destruction of patient data: Destruction of patient data may interfere with proper
delivery of care, and may be used to violate accountability.

6. Disruption of system functionality: Disruption of networking or platform func-
tionality can interfere with care delivery.

7. App/Device data tampering: Data directly displayed to users through apps, or
that is used by apps in an intermediate sense to drive app logic can harm patients by
misleading clinicians or causing apps to respond inappropriately.

8. Log data tampering: Alteration or destruction of data destined for or contained by
the logging system can be used to violate accountability.

Figure 1.1: Security-related threats to MAPs

normal user interfaces.

Figure 1.3 contains a set of high-level security goals that we have created for MAPs.

These goals are derived from the security properties and requirements described by Vasser-

man et al.6

The work presented in this thesis is intended to be a step towards the creation of a com-

prehensive security architecture for the Medical Device Coordination Framework (MDCF).

The MDCF is a functioning Medical Application Platform, which has been built to serve as

a working implementation of an ICE-like system. In order to meet our security goals (1.3,

3

1. Denial of Service (DoS): As in any network connected system, denial of service
attacks are possible. For example, The underlying communication infrastructure could
be flooded with messages. The ability to connect a device might be impeded by a flood
of connection requests.

2. Resource Consumption: A resource consumption attack is a subset of denial of
service attacks. Many types of DoS rely on the attacker having more resources than
the target, but in resource consumption attacks the amount of resources an attacker
uses to attack a system is disproportionately smaller than the quantity of the target’s
resources consumed in the attack.

3. Eavesdropping An attacker is able to view and store sensitive plaintext data.

4. Message Replay: An attacker is able to record some message (data transmission or
a command), when the copied message is sent again, it is treated as a valid message.

5. Message Forgery: An attacker is able to generate and insert messages/data into the
system as they please.

6. Man-in-the-middle: Using a combination of other attacks, the attacker is able to
insert themselves in communications between components of a MAP, impersonating
components in a way that allows them to quietly control the system and potentially
cause serious harm to a patient

Figure 1.2: Network based attacks on MAPs

we have explored device certification, communication security, device authentication, and

access control for the MDCF.

A certification system is necessary to determine the provenance of components to be

integrated into the MDCF. This system is directly required for meeting our goal (1.3)

of ensuring that components integrated into a MAP have necessary regulatory approval.

Models of compatible devices will need to be approved by a regulatory/certifying authority.

The manufacturers of devices must also be approved by this authority, and each individual

device will have a unique identifier assigned to it. We need a means of reliably enforcing that

all necessary certification steps have been taken for each device before it is allowed to be

integrated into the MDCF or other ICE-like system. Thus, one of the contributions of this

work is to show a straight-forward mapping of regulatory policy to a verifiable cryptographic

4

1. Prevent attacks and unauthorized access to the system that could directly or indirectly
cause harm to patients

2. Prevent theft or other exposure of protected health information

3. Ensure components integrated into the system have appropriate legal, safety, regula-
tory approval

4. Ensure that security features are highly usable (security does not interfere with delivery
of medical care)

Figure 1.3: High level MAP security goals

representation/indication of component-wise regulatory approval.3 We accomplish this using

chains of certificates which are packaged with every ICE compatible device, which are used

to authenticate devices. During the authentication process for a device, if any portion of

the chain of certificates does not match the rest of the chain, or if the certifying authority is

not recognized, the device will not be allowed to connect. Otherwise, if a device’s certificate

chain is found to be valid, it will be allowed to continue on to the other steps in the connection

process.

In order to address threats (1.1) directly stemming from network based attacks (1.2),

communication security and device authentication features must be incorporated into the

MDCF. We believe that these features should be implemented modularly, enabling medi-

cal device vendors to implement whichever features they deem necessary. Ideally, pre-built

standard communication security and authentication modules will be available from a cer-

tification body or third-party software developers.2 We intend to maximize compatibility

by offering numerous security provider choices, and accommodate new technologies as they

emerge by making our system extensible. Our modular implementation approach is similar

to that of Java or OpenSSL security services,7,8 instantiated by name rather than a function

call to a specific method.9 By offering pre-made security providers, we decrease the work-

load of medical device developers by making it unnecessary to write channel security and

authentication modules from scratch.

5

Access control, together with an user authentication system, is necessary for preventing

threats (Figure 1.1) to patient safety and privacy, particularly those stemming from unau-

thorized use of clinician user interfaces. Given the nature of a clinical setting, we believe

that an access control system based on Role-Based Access Control (RBAC)1 is an appropri-

ate solution. RBAC is designed to allow administrators to define access control policies that

fit the roles and workflows of their organization.10 Our exploration of RBAC is in the form

of a requirements specification and a high level design for an RBAC system in the MDCF.

Following this introduction is a background chapter. In the background we describe the

context of this work in terms of previous and related efforts on device interoperability. This

includes some discussion on the Integrated Clinical Environment (ICE), and how it relates

to the MDCF. We describe the architecture of the MDCF, and the purpose of the various

components in it. This also includes a description of the MDCF Channel Abstraction,

and the Connection Mode State Machine. After the background, we describe the device

certification system we have devised for ensuring the trustworthiness of medical devices

connecting to MAPs. Next, we discuss the design and implementation of a communication

security system in the MDCF, which enables the creation and use of communication security

providers which can provide data confidentiality, integrity, and authenticity. We also cover

the creation and integration of a pluggable, flexible authentication system into the MDCF,

and evaluate the performance of proof-of-concept device authentication providers. Finally,

we present the requirements and discuss design choices for a Role-Based Access Control

(RBAC) system within the MDCF.

6

Chapter 2

Background

2.1 ICE

The Integrated Clinical Environment (ICE)11 is ASTM standard F2761-200912 for a

medical application platform – a safety- and security-critical high-assurance middleware for

inter-component communication.2 It is intended to serve as a universal standard for medical

device integration. The clinical functionality of the system is provided by medical devices

as well as automated clinical work flows (“apps”) running on an application host. ICE

apps can both receive data from devices and control them. This allows developers to create

apps which can perform transformations on the data, synthesize data from multiple devices,

and/or perform closed-loop control.13 A closed-loop control app would describe the data

required (e.g., types and frequency of sensor readings), the nature of its service in terms

of device control (actuation), as well as explicit safety goals. Another possible application

is a “smart alarm”13 which is triggered by a combination of physiological signals from

multiple devices. This sort of alarm may suffer from less false positives than traditional

alarms. ICE apps allow for richer, more powerful ways to view and analyze physiological

data than would be present directly on a device. This also means that some devices such as

pulse oximeters can function more as sensors without a user interface, instead of being full

7

Figure 2.1: The primary components of the ICE architecture. External interface, and
patient connected to devices, are omitted.

standalone devices.

An important feature of ICE is that it suggests a new approach to medical device regula-

tion. In the current regulatory philosophy, a system like ICE would likely require regulatory

approval for each possible combination of connected medical devices, because each config-

uration could be considered a different medical “device”.2 Consequently, ICE suggests a

component-wise regulatory approach, wherein various standards and interfaces are defined

for ICE, and if a device is found to conform to these standards, we can infer that it is

safe to connect to the ICE system. In this approach, the app manufacturer is responsible

for making system safety claims, and we rely on the ICE system (enforced by specialized

8

middleware) to prevent devices from adversely impacting each other’s functioning. Thus,

if each individual device or app has an ICE compatible interface that passes safety testing

and the ICE middleware does not allow devices to interfere with each other, then any1 set

of connected ICE compliant devices and apps should still result in a safe system.

In ICE architectures, devices are connected to a component called the Network Con-

troller. This component can be considered the network abstraction: it facilitates commu-

nication between devices and applications (automated medical work flows) running on the

Supervisor. Figure 2.1 illustrates the basic architecture of ICE.

The ICE Supervisor encompasses the “front end”, user-facing component of ICE, and

hosts apps in isolated environments and guarantees run-time resources like RAM and CPU

time. In the ICE architecture, apps are programs that can display patient data as well

provide control over devices which support it. The Supervisor also includes built in tools

for launching apps and managing devices.

The ICE Network Controller facilitates communication between Supervisor apps

and medical devices. All ICE communication takes place through messages sent over vir-

tual channels maintained by the Network Controller (NC). Each channel is specific to a

device-app pair. Whenever a new device connects to an ICE system, it is the Network

Controller that “discovers” the new device and performs the connection/handshaking and

authentication protocols.

2.2 MDCF

The Medical Device Coordination Framework (MDCF)14 is an open source medical

application platform, developed jointly by Kansas State University and the University of

Pennsylvania.13 It is intended to serve as a sandbox that allows researchers, regulators, and

1There will be limits on how many devices and apps can be simultaneously connected based on compu-
tational resources such as CPU, memory, storage, and bandwidth. Ideally any combination of compliant
apps and devices that fall within our resource constraints should result in a safe, functional system.

9

Figure 2.2: MDCF components grouped by their logical ICE architecture role.

medical device vendors to experiment with a working ICE-like system. Figure 2.2 shows the

organization of MDCF components with respect to the ICE architecture described in the

previous section. They are described in detail below.

2.2.1 Supervisor Components:

The App Manager: manages the life-cycle of apps; meaning that it starts and stops

the execution of apps, provides isolation and service guarantees, monitors and resolves

(or notifies clinicians of) “clinically important” (e.g. medically adverse) interactions or

architectural interactions (two apps trying to get exclusive control of one device).

10

The Clinician Service: provides an interface for selecting, instantiating, and config-

uring Supervisor apps for use with a clinician console GUI. New apps can be started and

running ones can be configured. Appropriate user authentication/login will be required.

The Administration Service: provides controls for managing and installing Super-

visor apps and components. Appropriate user authentication/login will be required. This

service should not need to reconfigure running applications, and should be prevented from

doing so by the App Manager.

2.2.2 Network Controller Components:

The Channel Service: provides interfaces between middleware platforms and the rest

of the MDCF. It contains interfaces for the messaging server (e.g. OpenJMS, ActiveMQ),15

message senders, message receivers and message listeners. It is partially responsible for inter-

app and inter-device data isolation and performance guarantees. It houses the code for all

authentication providers, as well as all interfaces and factories related to authentication

providers (Figure 2.2(a)).

The Connection Manager: manages connections with devices and the creation and

destruction of channels through direct interaction with the message provider. The Con-

nection Manager is directly involved with device authentication. It also contains the main

hooks for the Network Controller authentication providers (Figure 2.2(b)).

The Device Manager: sets the status of a device as connected or disconnected, sends

commands to device to start or stop publishing, and configures devices for use with specific

apps.

The Device Registry: stores and retrieves information about devices from a database.

For each device, it stores and provides access to information such as its type, name, meta-

data, and active apps associated with it. We augment this data structure to store security

metadata, such as active encryption keys for device private channels.

11

The Component Manager: manages MDCF app components, and works in a way

analogous to the Device Registry. It is used to store and retrieve information about app

components.

2.2.3 Channel Abstraction

MIDAS

DDS

Channel
Abstraction

Channel
Receiver

Channel
Receiver

Channel
Sender

Channel
Sender Device

App

Figure 2.3: The MDCF Channel Abstraction.

A critical element of the architecture of the MDCF is the channel abstraction (figure 2.3).

The channel abstraction allows the MDCF to run on top of different middleware implemen-

tations, allowing them to be treated as a message-oriented publish/subscribe middleware

platform. Pictured here are MIDAS and DDS, the two supported middleware systems at

the time of writing. However, the MDCF has in the past also supported ActiveMQ and

OpenJMS.

The channel abstraction relies on a notion of channels (also sometimes called topics).

Channels are used to isolate streams of messages such that messages in a stream can only be

sent or received by components that register a sender or a receiver object for that channel.

Thus a message is only ever distributed to components that have a receiver subscribed to

the channel the message was published on.

12

2.2.4 Connection State Machine

The implementation details of the device connection protocol (using a state machine), shown

in Figure 2.4, are particularly relevant for device authentication. Each state is implemented

as a separate Java class. It is within these classes that the messages in the connection

process are sent and received. Effectively, two connection state machines exist for each

device; the device and the Network Controller each maintain their own separate views of

this state machine. These different views of the connection state machines are utilized to

ensure that all of the steps in connection process are executed in the appropriate order. (In

the text, we refer to the Network Controller view of the state machine, unless stated

otherwise.) Each state machine is associated with a single object that can be used to access

or modify the current state. These classes are also used to store any information that needs

to be accessed by more than one state. The states most relevant to device authentication

are:

DISCONNECTED: The initial state. The device sends the AUTH message during the

DISCONNECTED state. Upon reception of the AUTH message, the Network Controller

initializes its view of the connection state machine and moves into the AUTHENTICATING

state.

AUTHENTICATING: Upon receipt of the AUTH message, the Network Controller al-

locates and connects to private channels for the device and sends the channel information

to the device in an AUTH ACCEPTED message. The device connects to the channels,

after this point the rest of the messages used for connection are sent across these private

channels. Note that “private” is used here not to denote confidentiality, but rather than

these channels are logically dedicated to communication with a specific device (as opposed

to the public “atrium” channel).

AUTHENTICATED: The device has been successfully authenticated. It sends an IN-

TERFACE message to test the private channels before progressing into the ASSOCIATING

state. (The INTERFACE message is a confirmation that the private channels set up at the

13

Figure 2.4: MDCF Connection State machine, with the outline denoting portions relevant
to connection-time authentication.

end of the AUTHENTICATING state are working. The content of the message is a fixed

string.) Although we routinely refer to the device authenticating to the Network Controller,

it is trivial to extend the protocol to support mutual authentication.

ASSOCIATING: Upon receipt of the INTERFACE message, the Network Controller cre-

ates heartbeat and acknowledgment channels. The device periodically publishes heartbeat

messages on this channel, enabling the Network Controller to detect an unexpected de-

vice disconnection (if too many heartbeat messages are missing). The Network Controller

communicates these private heartbeat channels to the device and then transitions to the

ASSOCIATED state.

14

ASSOCIATED: The device is fully connected in this state. The device will remain in

this state unless it ceases to be connected and transitions to either the LOST or DISCON-

NECTED state.

LOST: When too many device heartbeats have been lost, the Network Controller places

the device in the LOST state. It must then attempt to reconnect, transitioning into the

RECONNECTING state. (If the device state machine is not in the LOST state, and it suc-

cessfully communicated with the Network Controller, it will be explicitly told to reconnect.)

RECONNECTING: A device in this state is attempting to reconnect. If reconnection

is successful, the device it returns to the ASSOCIATED state. Otherwise, the device tran-

sitions to the DISCONNECTED state. The Network Controller remains in the RECON-

NECTING state for a fixed amount of time, or until the device successfully reconnects.

In practice, to minimize resource usage and protect against resource DoS attacks, the

state machine object used for a connection by the Network Controller (in the transition from

DISCONNECTED to AUTHENTICATING) is taken from a pool of pre-allocated objects.

When the Network Controller “destroys” a state machine, it is returned to the object pool.

Note that this prevents devices from connecting when the pool is exhausted (either due to

a large number of connected devices or an active attack). This is by design: devices that

authenticate successfully will eventually connect, and devices which cannot authenticate but

are performing the attack cannot cause more objects to be allocated. Although malicious

devices may keep the pool drained, an honest client will eventually (probabilistically) succeed

in sending an AUTH message to the MDCF through the flood of adversarial messages, thus

reserving a provider. Authenticated connections are long-term, so honest devices need only

succeed once. When under attack, the time needed for an honest device to connect may be

arbitrarily long, but in practice would be bounded with high probability.16

15

2.3 Related Work

Over the past several years, several papers have been published specifically on MAP/ICE

security. Hatcliff et al.3 establish the need for certificate based trust framework in ICE.

Venkatabramanian17 18 has highlighted the need for securing interoperable medical devices

and described risks, attack vectors and security requirements for them. Venkatabramanian

et al.19 present an attack model for ICE-like systems. Vasserman et al.20 present models for

failures and the consequences of failures for components of ICE-like systems. Vasserman and

Hatcliff6 describe security challenges and requirements for MAPs. Kune et al.21 discussed

ICE security requirements at different levels of the OSI stack. Taylor et al.22 used attack

graphs to evaluate threats to interoperable medical devices and discussed possible mitiga-

tions to those threats. The chapters in this thesis on authentication and communication

security cover material previously published by Salazar and Vasserman.9

16

Chapter 3

Certificate Framework

3.1 Motivation

In order to safely use a dynamically-constructed system of medical devices and apps, we

must be able to determine the provenance of the components. Models of ICE compliant

devices will need to be approved by a regulatory/certifying authority. The manufacturers

of these devices must also be recognized by the FDA and individually identified, e.g., with

an FDA-assigned unique number. We need a means of reliably enforcing that all necessary

certification steps have been taken for each device before it is allowed to be integrated

into an ICE system. In this paper, we show a straight-forward mapping of regulatory

policy to a verifiable cryptographic representation/indication of component-wise regulatory

approval.3 We accomplish this using chains of certificates which are packaged with every

ICE compatible device, which are used to authenticate devices. During the authentication

process for a device, if any portion of the chain of certificates does not match the rest of

the chain, or if the certifying authority is not recognized, the device will not be allowed to

connect. Otherwise, if a device’s certificate chain is found to be valid, it will be allowed to

continue on to the other steps in the connection process.

17

Figure 3.1: FDA’s sample Unique Device Identifier label for medical devices.

3.1.1 Trust Evidence

Existing medical devices have human-readable labels that identify the device, display man-

ufacturer recognition from regulatory agencies, and labels that attest to safety/compliance

testing for the product. In Figure 3.1, we see a sample human-readable label from a recent

FDA guidance on device and component identification.23

To ensure appropriate trust levels, ICE needs non-forgeable and machine-readable labels

that provide information about the manufacturer, product, and confirmation of compli-

ance/safety testing and regulatory review. This machine readable information is not meant

18

to replace the physical label – both should be present on an ICE compliant device.

3.1.2 Public Key Infrastructure

Our certificate framework is based on a Public Key Infrastructure (PKI).24 Public key

cryptography provides an efficient, distributed way to prove the identity of an entity without

requiring an always-on Internet connection, e.g., to query an FDA database. Each entity has

a certificate which contains information about that entity, particularly their name and public

key. Each certificate is signed using the private key corresponding to some other entity. In

PKI, there is a root of trust who serves as the starting point in a chain of trust. All

other certificates are signed by either the root or an intermediate authority. Intermediate

certificates are similar the root certificate except that they are signed by the root. Finally,

there are end-entity certificates that are intended only to identify an entity, and may not be

used to issue other certificates. Certificates may also carry additional information about an

entity, beyond what is included in a standard certificate. In the X.509 PKI standard, this

additional information is contained within extra fields appended to the end of a certificate,

known as certificate extensions. For our proof-of-concept implementation, we use X.509v3

certificates with a custom extension.

3.2 Requirements

A high-assurance compositional system calls for an automatic way to verify the provenance

and regulatory/third-party approval status of devices and apps before they are allowed

to authenticate.3 A trust architecture should complement the proposed component-wise

regulatory approach for ICE. In this section we lay out the specific requirements that a

trust architecture for ICE should satisfy.

We assume that a device is trustworthy if it has been shown to be ICE compatible,

has received regulatory approval (by the FDA or delegated third-party agency in the United

19

States, or any appropriate agency for a particular geographical region) and has optionally re-

ceived additional third-party safety and/or compliance certification. Thus, our main concern

is reliably conveying this information about a device to ICE. A specific list of information

needed to determine trustworthiness for a device is in Table 3.1.

It may be possible to create malicious software or devices that interfere with the safe

functioning of the ICE system as a whole, just as one may introduce malware into even

tightly controlled ecosystems, such as Apple’s iOS.25 A malicious component could exfiltrate

sensitive patient information or interfere with the functionality of other system components.

A malicious device might even harm patients directly, while a malicious app could do so

indirectly by reporting inaccurate information or sending commands to devices.

It is out of scope for this work to examine, in detail, how we might prevent malicious

entities from infiltrating medical systems, or causing harm if and when they do. We ac-

knowledge that compatibility, regulatory, and safety checks may be insufficient to catch

sophisticated attackers. Nonetheless, we wish to prevent misrepresentation of capability

and misidentification of components or manufacturers. We focus on preventing the forgery

of compatibility and safety evidence. The ICE trust framework must be designed so that

devices and apps with forged, stolen, or otherwise invalid credentials will not be trusted

by an ICE system. The transmission and verification of trust information about a device

needs to be done quickly, in an automatic fashion which involves minimal to no interaction

with clinicians. Such a system should also be created with an eye towards ease of use for

regulators/third-party certifiers, manufacturers, and system administrators at point of care

facilities. We believe that these requirements point towards use of a light-weight PKI based

on X.509 certificates.

20

Figure 3.2: ICE certificate chain. Solid lines indicate signing relationships, i.e. the private
key corresponding to the arrow origin is used to sign the certificate to which the arrow
points. The dotted line represents a certificate extension used to accommodate the additional
signature of the Certifying Authority on a certificate.

21

1. Device global unique identifier (GUID)

2. Identity of the device manufacturer

3. Specific device model information
(e.g., model name, firmware revision)

4. Evidence of ICE compatibility

5. Evidence of regulatory/safety compliance

Table 3.1: Information used to judge the trustworthiness of a device.

3.3 Design

Trust evidence for an ICE compliant medical device is represented as a chain of X.509v3

certificates. This chain is sent by the device to the ICE Network Controller during the

connection process. If the certificates are valid, the device is considered trustworthy and

will be allowed to proceed in the connection process, otherwise the device will be prevented

from connecting. We define valid certificates as those which can be traced back to a root of

trust whose certificate is stored by the ICE NC, are within their valid date range as listed

on the certificate, and if applicable, have an issuer field that matches the subject field of

the certificate corresponding to the private key used to sign the certificate.

This chain of certificates contains all of the information listed in Table 3.1. Specifically,

a device’s unique identifier (GUID, Table 3.1-1) is stored in its device instance certificate.

The manufacturer of a device (Table 3.1-2) is identified by the manufacturer certificate

in the certificate chain. Device model information (Table 3.1-3) is contained within the

device model certificate. Evidence of ICE compatibility and regulatory/safety compliance

(Table 3.1-4 and 5) is represented by the signature from the Certifying Authority on the

device model certificate. The Certifying Authority will only sign device model certificates

which have met regulatory requirements.

Use of the PKI scheme described in this section satisfies our requirement of providing

a non-forgeable means of obtaining necessary trust information as long as the underlying

22

public key and hashing algorithms are valid and applied correctly. (It is computationally

infeasible to find the private key matching a public key using a sufficiently large key size.)26

From the certificate chain, the verifier should be convinced (as long as a signature verifies

correctly) that e.g., the device which presents the chain was developed by the claimed

manufacturer and cleared by the Certifying Authority.1 Thus, as long as the various entities

in the trust chain prevent theft of their private keys, a valid ICE certificate chain serves as

a sufficient non-forgeable and non-repudiable proof of trustworthiness for a device.

A device or app’s metadata and runnable code will be signed by the manufacturer using

the private key corresponding to the device model (or app equivalent) certificate. These

signatures must be verified using the device model public key during the initial connection

of an app or device in addition to verification of the certificate chain itself. Hence, au-

thentication will fail for a device or app with code or metadata which does not match the

certificate it presents.

The framework we propose will reduce the attack surface for ICE by making it more

difficult to integrate malicious or otherwise unsafe devices and apps. Such apps or devices

would ideally never be approved by the Certifying Authority, and it is computationally

difficult (functionally impossible) to forge a CA signature, guaranteed in our system by

cryptographic properties. While we believe this trust framework is necessary, we recognize

this will not be sufficient to prevent dangerous or malicious behavior device or app.

This system will not significantly impede performance for devices or the middleware,

as everything described here can be implemented using existing off-the-shelf cryptographic

libraries using highly optimized code for well-known algorithms. This type of certificate

chain verification occurs within web browsers every time a user visits a secure site using

SSL/TLS. Likewise, verification of this certificate chain will not require any interaction the

part of a clinician. The clinician would simply connect a device to the ICE system, or launch

an app as they would otherwise. All trust verification will take place automatically within

1Note that “cloning” devices is out of scope for this paper, and can be managed through revocation lists.

23

the connection protocol for ICE compatible apps or devices.

In the remainder of this section, we describe each of the certificates in the trust chain.

An overview of certificates and their relationships are shown in Figure 3.2. The detailed

contents of the certificates is described below.

3.3.1 Root Certificate

PKI requires that a root of trust be established. We envision the root of trust as either

a regulatory agency (e.g., FDA) or a third-party compliance/safety testing group. Unless

otherwise stated throughout the rest of this paper, we will refer to the holder of the root

certificate as the Certifying Authority. This certificate should be present in a list of trusted

certificates as part of the ICE NC, similar to the way root certificates are distributed in

web browsers. Otherwise, lacking a trust root, every certificate chain will fail to verify and

connections will not be allowed.

3.3.2 Manufacturer Certificate

Device manufacturers possess an intermediate certificate issued by the Certifying Authority.

The purpose of this certificate in the trust chain is to uniquely identify the manufacturer,

and demonstrate that they have been recognized as a valid manufacturer by the Certifying

Authority.

The certificate provides a non-repudiable claim by the manufacturer to have manufac-

tured a particular device. To that end, the manufacturer credentials in the manufacturer

certificate are used to sign device model certificates. Issuing machine-readable manufacturer

certificates can augment the current medical manufacturer regulatory process, but neither

replaces nor alters it.

24

3.3.3 Device Model Certificate

Each model of device has a distinct certificate called the device model certificate. This

certificate uniquely identifies the model of device, is used as proof that it was created by a

valid manufacturer, and proof that it meets any safety or regulatory criteria imposed by the

Certifying Authority. A device model certificate is also associated with a metadata file for

a device, which contains information including (but not limited to) the interoperable “data

streams” the device produces and consumes, whether those streams are periodic or sporadic

in nature, and access control information. Similar metadata is associated with runnable

code for an app. The credentials contained in this certificate are used to sign individual

device instance or app certificates, outlined below. This certificate is issued/signed by the

device manufacturer, but also contains a signature from the Certifying Authority. We use

a custom X.509 extension to implement this dual-signed certificate.

3.3.4 Device Instance Certificate

To uniquely identify each device, we use a device instance certificate. The primary identify-

ing information for an individual device within ICE is it’s globally unique identifier (GUID),

which we store as the common name on this certificate. This certificate is an end-entity

certificate, meaning that no other certificates may be issued using the private key for this

certificate. Each individual medical device is an instance of a particular model of device,

and to that extent, it is signed by the manufacturer using the corresponding device model

certificate. Device instance certificates may be cached by the ICE NC to reduce the time

required for future authenticated connections with that device.

3.3.5 Trust Chain Creation

A manufacturer who wishes to issue ICE compliant medical devices must first obtain a

manufacturer certificate signed by the Certifying Authority. In order to do this, they send

25

a certificate request to the Certifying Authority. The Certifying Authority, if they approve

this manufacturer, sends back the signed manufacturer certificate. This process is simply

an analog of the current regulatory requirements for medical device manufacturers, but

produces machine-readable credentials. It neither replaces nor alters the current regulatory

process.

Next we describe the creation of the device model and device instance certificates by

walking through the ICE certification process for a newly developed medical device.

1. A manufacturer sends a prototype of a new medical device to the Certifying Authority

as part of the process of collecting evidence of safety, effectiveness, and ICE compatibil-

ity. Along with this device, the manufacturer includes copies of the device’s metadata

and any associated runnable code (app) components and their metadata. Metadata

files are signed by the manufacturer. Further, a signing request for the device model

certificate is attached.

The device model signing request is different from a standard certificate request, since

the manufacturer will be the issuer of the device model certificate, while a Certifying

Authority signature will be contained within a custom certificate extension on the

device model certificate.2

2. The Certifying Authority analyzes and tests the device to ensure it meets compatibil-

ity and regulatory safety, security, and effectiveness standards. (The CA may conduct

safety testing, or this may be done by a third party. For simplicity, we do not differ-

entiate between the two cases.) When the device model is approved, the CA signs the

device model signing request using its private key.

3. When an individual copy/instance of a device is created, the manufacturer creates a

device instance certificate for that device. This certificate contains the globally unique

2The extension is a signature on the device model certificate. This will unambiguously indicate approval
by the CA for this specific device model, since the device model is unique for each certificate.

26

identifier (GUID) for the corresponding device. It is then signed by the manufacturer

using the private key corresponding to the device model certificate.

3.3.6 Authentication of Trust Chain

When a device connects to the MDCF, it presents its chain of certificates as evidence of

trustworthiness and ICE and regulatory compliance. At any point in the verification process,

if any single check fails, the device is prevented from connecting.3 In addition to the steps

outlined below, if the certificate falls outside of its valid date range, verification will fail. As

an optimization, the Network Controller may cache certificate chains for devices which has

previously connected. When reconnecting, a device can then send only its device instance

certificate. However, if that certificate is not recognized by the NC, the device would have

to undergo the full verification process.

The remainder of this section presents the steps for run-time verification of an ICE

certificate chain for a device connecting to a Network Controller for the first time. This can

be implemented in a standardized reference library and reused by any manufacturer.

1. The Network Controller (NC) first verifies that it already has a stored copy of the

Certifying Authority (CA) root certificate included in this certificate chain. (For the

moment, we assume a single regulatory authority, and thus a single root of trust.) If

the root of the device’s trust chain is an unknown CA, the connection to the device

is terminated, and a system administrator is alerted. This device will be unable to

connect to the ICE system unless its CA certificate is added to the NC’s trusted

certificate store.

2. Next, the NC validates the manufacturer certificate. The issuer field of the manufac-

turer certificate must match the subject field of the CA certificate. Furthermore, the

signature on the manufacturer certificate must be verified using the public key from

3However, this verification may be bypassed in a “break-the-glass” scenario.27

27

the CA certificate.

3. Now, the NC verifies the device model certificate and checks code and metadata sig-

natures. The issuer field of the device model certificate must match the subject field

of the manufacturer certificate. Multiple signatures will be verified in this step. First,

the signature on the device model certificate itself is checked using the public key from

the manufacturer certificate, then the CA’s signature on the device model certificate is

verified using the CA’s public key. Once the certificate is verified, the code and meta-

data signatures are verified using the public key from the device model certificate.4

4. Finally, the NC determines whether the device instance certificate is trustworthy. In

order for this to occur, the issuer field of the device instance certificate must match

the subject field of the device model certificate. After this, the device model signa-

ture on the device instance certificate must be verified using the public key from the

device model certificate. If the device instance certificate is accepted by the NC, this

certificate chain is considered trustworthy, and is cached for future use.

Note that the entire verification process happens with no user interaction.

3.4 Certificate Authoring Tool

Although we expect certificates to be created in bulk, we nonetheless developed a stand-alone

graphical certificate authoring tool to demonstrate the process of creating all the required

certificates in the ICE trust chain (with the exception of the root of trust). This tool,

pictured in Figure 3.3 is meant to be used by the Certifying Authority and by manufacturers.

With it, a manufacturer can create certificate requests for their manufacturer certificate or

a device model certificate, while the Certifying Authority can use it to sign these requests.

4This must be the last part in this step because the Network Controller would be unable to trust anything
signed using the device model private key until after the device model certificate itself has been shown to
be trustworthy.

28

Figure 3.3: MDCF Certificate Authoring Tool – a GUI to streamline certificate creation for
the ICE certificate chain. Pictured is the tab used for creating device model signing requests.

Furthermore, manufacturers may use the tool to create the device model and device instance

certificates themselves.

29

Chapter 4

Authentication

4.1 Motivation

Due to the threats (1.1) posed when an untrustworthy device is integrated into a MAP, an

authentication system is needed to meet the security goals (1.3) of the MDCF (and MAPs

in general). This system should be implemented in a way that allows medical device vendors

to implement authentication providers that meet the needs of their devices. Furthermore,

we intend for standardized, pre-made authentication modules to be made available by a

centralized certifying authority or the ICE Alliance.2 The MDCF should be extensible to

ease integration of future technologies, and to make it easier to maximize compatibility by

offering multiple security implementations. We use an approach similar to that of OpenSSL

or Java security services by instantiating security providers by name instead of by a function

call to a particular method.7,8

The modifications we describe in this section not only form the basis for adding a robust

authentication system, but also serve to reduce the some of the burden on medical device

developers by eliminating the necessity of creating an authentication system from scratch.

The pre-defined modules that may be created using this framework can be used without

0The work presented in this chapter was originally published in a workshop paper titled “Retrofitting
communication security into a public/subscribe middleware platform”.9

30

modifying the MDCF.

We anticipate that this system will also allow us to create an authentication protocol

that ties into the certificate framework described in chapter 3.

We begin this chapter with requirements for the authentication framework. Next we

describe the design of this system. Finally, we discuss our evaluation of the framework.

4.1.1 Requirements

The MDCF device authentication framework serves as a layer of abstraction which frees

developers from needing to modify the MDCF when implementing device authentication

functionality.

We need this framework to enable automatic authentication of devices to occur without

any intervention by clinicians. The authentication API should also be developer-friendly.

Meaning it is mostly invisible to typical device developers — they should be able to use

authentication without detailed knowledge of how the system works. Doing this requires

some foresight into which specific components of the MDCF must be modified. The MDCF

has a significant pre-existing code base (20K LOC), which we must hook into while also

preserving compatibility with existing simulated medical devices. Thus, integration of the

device authentication framework should be conducted while avoiding the need for major

changes to the logical separation of components in the MDCF or fundamental architecture

of the MDCF (particularly the connection state machine). We consider the “users” of this

system to be developers of new MDCF-compatible devices. These users will make use of the

framework in two different ways: using pre-made authentication providers on devices they

develop, and creating new authentication providers. We have already implemented some

providers and made them available to developers, but we also allow providers to implement

their own authentication protocols. Lastly, we need to make sure that the performance over-

head/resource utilization of the authentication framework is not significantly large enough

as to interfere with normal operation of the MDCF.

31

Network Controller

Supervisor
App
An

...App
A1

App
A2

App
A3

App Manager

Connection
Manager

Device
Manager

Device
Registry

Component
Manager

Device
D1

Device
D2

Device
Dm

...
Channel
Service a

c

b

Figure 4.1: MDCF components grouped by their logical ICE architecture role and showing
primary hook locations (circles a,b,c).

Requirements:

• the API should be expressive, powerful, and easy to use

• the framework should allow developers to implement arbitrary authentication proto-

cols

• implementing authentication modules should not require alteration of the MDCF

• the only source of overhead should be the authentication modules themselves

32

4.1.2 Authentication Hooks

When we began this work, the MDCF was lacking any sort of security controls. Our first

task was to modify the MDCF to place our authentication “hooks” in key locations in the

code to allow us to later implement security modules. These modules are self-contained,

reminiscent of SELinux.28 In doing this, our goal was to guarantee that the security hooks

are positioned in a way that allows developers to create “expressive” security modules. Our

modifications to the MDCF code base are fairly small: the authentication framework (sans

providers) is made up of a little over 1,000 LOC (MDCF as a whole was over 19K LOC

originally). We evaluated the expressiveness of our hooks by initially developing a NULL

authentication module (like IPSec NULL encryption).29 This was followed by implementing

other authentication modules including one using TLS authentication. Implementing these

different authentication modules shows that the authentication framework is sufficiently

flexible and expressive to implement nearly arbitrary authentication protocols, with effec-

tively arbitrary rounds of messages being exchanged. All of this is done transparently to

developers assuming they are using the pre-existing authentication providers in the MDCF.

4.1.3 Authentication Providers

Not only do we need to place security hooks for our authentication solution, we also need

to create the components that comprise our actual security modules. These modules, called

authentication providers, enclose the actual logic that makes up an authentication protocol.

Authentication providers all implement the same interface so that we can easily drop in

providers for different authentication protocols as needed. In this system, providers come in

matched pairs. One provider in the pair is for the MDCF (server). The other provider is for

a medical device (client). Providers are responsible for creating and connecting to dedicated

authentication channels, as well as handling the sending and receiving of all messages in the

protocol. Beyond serving as a container for the authentication protocol logic, the device-

side authentication provider is also required to produce the data for the authentication

33

message, which is the very first message sent from a device to the MDCF at the beginning of

the device connection process. Contained within this message is information that identifies

the protocol the device is attempting to use to authenticate with the MDCF. A device’s

metadata specifies which protocols that device supports. The provider that implements

the chosen protocol is instantiated by name during device initialization. The MDCF also

retrieves its corresponding authentication provider by name, based on the protocol specified

by the device when it connects (assuming this protocol is supported by the MDCF).

4.1.4 Robustness and Resource Allocation

An important consideration when implementing authentication protocols is denial of service

(DoS) attacks. Particularly, we need to pay attention to resource consumption, such as SYN

flooding attacks on web servers.30 We use a lazy resource allocation strategy to increase

the robustness of the MDCF in the face of such attacks. To illustrate this, lets consider

a possible first step during device connection: creating private channels for a device to

communicate with the MDCF on (before authentication is complete). Because this occurs

before authentication has completed, an attacker could create fake connection requests that

cause resources to be allocated for private channels to devices that might never be allowed

to fully communicate with the MDCF. In order to avoid this problem, we use only pre-

allocated resources (pooled) until after a successful authentication has taken place. The

allocation of resources during the connection process requires us to take special care in

placing our authentication hooks. Although malicious devices might still eat up all of the

resources in our pool, leaving it drained, we expect honest providers will eventually connect

successfully.16 Furthermore, this pool prevents the attack from interfering with existing

device communications.

34

4.2 Security Design

4.2.1 Device Authentication Hooks

An AUTHENTICATING state originally existed in the communication state machine, how-

ever it was nothing more than a placeholder – the state, when entered, automatically tran-

sitioned to the AUTHENTICATED state. We placed our authentication hooks so that all

authentication protocols are executed while in the AUTHENTICATING state, in order to

make using our framework as seamless as possible for MDCF developers. Our hooks are

such that a provider will execute on it’s own thread while the state machine is in the AU-

THENTICATING state, calling back to the connection state machine once authentication

has finished which triggers a transition to AUTHENTICATED. In this way, we encapsulate

and hide the multiple rounds of authentication message exchanges that occur within the

AUTHENTICATING state. Consequently, entire authentication protocols can be imple-

mented without needing to change the rest of the MDCF or device interfaces, as long as a

communication channel from the MDCF Network Controller to the device has already been

created.

Hooks are placed so that protocols are ran following the reception of the AUTH message

by the Network Controller and before the AUTH ACCEPTED message is transmitted All

of these message are exchanged with either the DISCONNECTED or AUTHENTICATING

states, making the connection state machine the primary location for the authentication

hooks. The API we have created neither restricts the number of rounds nor the context of

messages exchanged by authentication providers. Therefore, we claim that the framework

meets the requirement of allowing developers to implement arbitrary authentication pro-

tocols. Due to the ability to implement arbitrary authentication protocols, developers are

able to create providers that enable network controller (server) authentication as well as the

standard device (client) authentication. At run-time, an authentication provider factory

is created, as is a provider pool with at least one available provider when a device calls

35

a provider during a connection attempt. Within the DISCONNECTED and AUTHENTI-

CATING states, the provider is retrieved by name from the pool and executed. The AUTH

message contains two pieces of information: a value specifying the authentication protocol

requested by the device, and the device’s public key (or certificates).

Not only did we need to create the hooks described above, we also had to add an addi-

tional message to the connection protocol, which is sent to the device by the Network Con-

troller. This new message that we had to create is called the AUTH PROTOCOL message.

The purpose of this message is to transmit information to the device about the dedicated

authentication channels that the Network Controller provider will use to carry out the au-

thentication protocol. This message may optionally include additional information such as a

public key for the Network Controller. Authentication providers exchange messages on the

public atrium channels, from mgr atrium and to mgr atrium, before executing a protocol.

These are the initial AUTH message and the AUTH PROTOCOL message described above.

The rest of the authentication protocol runs on the dedicated authentication channels sent

in the AUTH PROTOCOL message. We found it necessary to add these dedicated authen-

tication channels to avoid unnecessarily broadcasting large quantities of messages on the

atrium channels (all components on the MDCF receive these messages). Particularly when

running simulations with large quantities of devices, the explosion in message traffic during

authentication imposed prohibitively high performance overhead. Authentication providers

execute their protocol when their respective runAuthProtocol() methods are called. (Note

that this is not a security risk, as all messages between the MDCF and the device would

be end-to-end encrypted and authenticated in a production system.) The connection state

machines wait for these methods to return boolean values to indicate either a successful or

failed authentication attempt. If the authentication fails then the device is disconnected,

otherwise, the device resumes the connection process.

The location of the authentication hooks also allows us to ensure that authentication

can not be bypassed (unless disabled totally by a system administrator). The only way

36

Figure 4.2: Illustration of the authentication process using the NULL provider.

that a device can connect to the MDCF is by progressing through the correct sequence of

states in the connection state machine. The sequence of states can be seen in Figure 2.4.

A device begins in the DISCONNECTED state. From there, it may only transition to the

AUTHENTICATING state. A device in the AUTHENTICATING state must enter the

DISCONNECTED state if authentication fails, or AUTHENTICATED if it succeeds. Each

device must go through the AUTHENTICATING state in order to connect. The authenti-

cation hooks are placed such that an authentication provider must execute before a device

can transition from AUTHENTICATING to AUTHENTICATED, therefore authentication

may not be bypassed.

4.2.2 Authentication Providers

NULL

To check the overhead of our design and the expressiveness of the hooks, we implement

a NULL authentication provider, which authenticates successfully if it receives a message

“PONG” in response to its challenge “PING.” The execution of the provider is mapped out

in Figure 4.2 and described below.

37

1. The MDCF and device initialize. The MDCF initializes providers and populates its

provider pool.

2. The device fetches any1 supported authentication method from the device-side authen-

tication provider object, then composes and sends an AUTH message to the Network

Controller (NC) with the name of the authentication algorithm.

3. Upon reception of the AUTH message, the NC creates its own view of the connection

state machine for this device. It then fetches the appropriate pre-initialized authenti-

cation provider from the provider pool, and passes the contents of the AUTH message

to this provider.

4. The NC-side authentication provider obtains channels to be used for executing the

authentication protocol with the device. It then sends an

AUTH PROTOCOL message to the device that specifies which channels should be

used by the authentication protocol only (the device is assigned new channels after it

successfully authenticates).

5. The protocol is executed, for the NULL authentication provider, which simply consists

of an exchange of the strings “PING” and “PONG” between the device and NC.

6. Upon successful competition of the protocol, the NC creates new private channels for

the device, sending the handles of those channels to the device in an AUTH ACCEPTED

message.

In addition to our NULL provider, we implemented three “non-trivial” providers for eval-

uation purposes: SSL/TLS, DSA, and DSA+DH. This exercise allowed us to confirm that

we meet two of our stated requirements. We found that the API is sufficiently expressive,

powerful, and easy to use. Also, as we explain later in this section, we found the only source

of overhead comes from the authentication modules themselves.
1Multiple methods may be supported both by the device and the MDCF, but currently negotiation is

not implemented.

38

SSL/TLS

Our TLS provider is based on Oracle’s java.net.ssl implementation, running TLS 1.2

and using the TLS DHE DSS WITH AES 128 CBC SHA cipher suite. This implementation can

be trivially expanded to support mutual authentication with only a few additional lines of

code (SSL/TLS provides this as standard functionality).

DSA and DSA+DH

The other two authentication providers (DSA and DSA+DH) use a simple challenge-response

protocol in which a message from the device to the Network Controller includes a DSA sig-

nature from the device. Upon receiving this message, the Network Controller verifies the

signature and then sends a signed response message to the device. Once the device verifies

this response, the authentication protocol terminates – note that this is a mutual authenti-

cation protocol.

Provider Code Evaluation

Code length metrics for all providers are in Table 4.1. Compared to developing and imple-

menting the framework, creating a provider is relatively simple, e.g. our SSL/TLS provider

is only 207 lines of Java code. The compactness of these providers is beneficial – minimizing

the amount of code and complexity within a security provider reduces the risk of introducing

vulnerabilities stemming from implementation errors.

4.3 Evaluation

In order to confirm that we meet the requirement of overhead in the authentication system

stemming only from the authentication modules themselves, we ran performance tests of

our modified MDCF implementation on a server with dual hex-core Intel Xeon X5670 64-

bit CPUs at roughly 2.93 GHz, with 12MB cache and 24GB system RAM, running Linux

39

Provider Implementation (LOC) Increase over NULL

MDCF Device MDCF Device
NULL 128 72 1 1
DSA 151 120 1.18 1.67
DSA+DH 200 178 1.56 2.47
SSL/TLS 207 171 1.62 2.38

Table 4.1: Authentication provider (device- and MDCF-side), complexity measured using
lines of code (LOC), and complexity increase from the NULL provider. NULL is little more
than the common infrastructure/scaffolding. The “Increase over NULL” column is therefore a
more accurate representation of the code complexity increase of new authentication modules.

3.8.13 and Sun’s Java virtual machine version 1.7.0 21. The resulting performance is shown

in Figure 4.3. Due to the limitations of Java and the current MDCF architecture on our test

bed, we could only reliably test 340 or fewer concurrent devices. In an attempt to tax the

resources of the MDCF and our authentication providers, the initial sharp spike in resource

usage is due to all test devices attempting to connect simultaneously. Each device begins

sending physiological data (SpO2 and pulse rate) following a successful join.

Figures 4.3(a) and 4.3(c) show the resource usage of MDCF using unauthenticated con-

nections. The Y axis are constrained for readability. The highest observed CPU utilization

within the start-up “spike” was 16% (DSA). Figures 4.3(b) and 4.3(d) show the resources

used after including framework hooks only (control) and when using various authentication

providers. The highest CPU utilization within the start-up spike was 19.75% (TLS), with

DSA and DSA+DH reaching 17.4% and 16.7%, respectively. Each line represents an average

of 11 instances of tests using identical configurations with 340 devices (device-side perfor-

mance not shown for readability). The standard error is negligible (the difference between

lines is statistically significant), and error bars have been omitted for clarity.

The control is a version of MDCF without any authentication code at all – the authenti-

cation code was not disabled, but rather removed entirely to avoid unexpected interactions.

The entire authentication framework consumes negligible resources – indistinguishable

from control, satisfying our requirement. Authentication modules in Figures 4.3(a) and 4.3(c)

show a modest but fixed resource cost. They are included in the running code, and a fixed

40

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

5	

0	 50	 100	 150	 200	 250	 300	

%
	 C
PU

	 u
.l
iz
a.

on
	

Time	 since	 system	 start	

CPU	 usage	 without	 authen.ca.on	

control	

TLS	

DSA	 +	 DH	

DSA	

(a) MDCF processor usage with all devices per-
mitted

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

5	

0	 50	 100	 150	 200	 250	 300	

%
	 C
PU

	 u
.l
iz
a.

on
	

Time	 since	 system	 start	

CPU	 usage	 with	 authen.ca.on	

control	

TLS	

DSA	 +	 DH	

DSA	

(b) MDCF processor usage with only authenti-
cated devices permitted

0%	

1%	

2%	

3%	

4%	

5%	

6%	

7%	

8%	

9%	

10%	

0	 50	 100	 150	 200	 250	 300	

%
	 M

em
or
y	
u4

liz
a4

on
	

Time	 since	 system	 start	

Memory	 usage	 without	 authen4ca4on	

control	

TLS	

DSA	 +	 DH	

DSA	

(c) MDCF memory usage with all devices permit-
ted

0%	

1%	

2%	

3%	

4%	

5%	

6%	

7%	

8%	

9%	

10%	

0	 50	 100	 150	 200	 250	 300	

%
	 M

em
or
y	
u4

liz
a4

on
	

Time	 since	 system	 start	

Memory	 usage	 with	 authen4ca4on	

control	

TLS	

DSA	 +	 DH	

DSA	

(d) MDCF memory usage with only authenticated
devices permitted

Figure 4.3: MDCF resource usage with 340 virtual devices running on a different host.

number are initialized to populate the provider pool, but are inactive – devices do not

include authentication code and therefore never request to authenticate (backward com-

patibility mode). Running authentication modules impose an increase in resource usage

dependent on the specific protocol being used (resource usage is protocol-dependent).

The network overhead in terms of latency and traffic volume is highly dependent on the

individual protocol being used, and can be tuned (by selecting the appropriate protocol)

depending on requirements. Authentication imposes a one-time latency increase due to

the larger number of network round trips required at connection time, but the observable

slowdown is negligible, and only occurs once – upon initial device connection. We found

that only the TLS provider caused an increase in bandwidth usage, but to such a small

41

extent as not to interfere with normal operation.

42

Chapter 5

Communication Security

5.1 Motivation

In order to prevent network-based attacks (1.2), the MDCF must have in place mechanisms

for protecting data sent between devices/apps, and the MDCF server when necessary. We

must ensure that patient information remains confidential. Furthermore, in order to protect

against attacks using forged messages, the MDCF must be able to verify the authenticity

and integrity of messages between devices, apps, and the MDCF server.

The purpose of the MDCF communication security framework is to serve as an ab-

straction layer which allows developers to implement different modules for communication

security without having to modify the framework itself. Building such a framework there-

fore requires some foresight into which MDCF components need to be modified, and how

to design the API to be developer-friendly and mostly transparent.

The MDCF communication security framework must hook in to the existing MDCF

code base while maintaining backwards compatibility with existing devices. Integration of

the communication security framework should not require significantly changing the fun-

damental design/architecture of the MDCF channel abstraction or otherwise disturb the

overall logical separation of MDCF components – the incorporation of communication secu-

43

rity should be mostly or completely transparent to developers working with (or modifying)

the MDCF code or message transport layer (bus).

Our target “users” are developers working on new MDCF-compliant devices or apps.

They will interact with this framework in two ways: using communication security providers

on components they create, and/or by creating new communication security providers.

5.2 Requirements

In order to facilitate the creation of mechanisms for enforcing the security properties of con-

fidentiality, integrity, and authenticity for communications in the MDCF, we have identified

the following requirements for the framework components (API, hooks, etc).

• API is powerful, expressive, and easy to use

• Allow developer to perform arbitrary transformations on messages

• The only source of overhead should be the transformations themselves

• Using or implementing providers does not require altering the rest of the MDCF

(outside of the framework)

• Communication security should be non-bypassable

• System should be invisible to clinicians

• Should be communication middleware-agnostic (not dependent on DDS or MIDAS)

5.3 Design

5.3.1 Hooks

To ensure that we can provide confidentiality, integrity, and authenticity of data in the

MDCF and satisfy our implementation requirements, we must correctly position our com-

44

Network Controller

Supervisor
App
An

...App
A1

App
A2

App
A3

App Manager

Connection
Manager

Device
Manager

Device
Registry

Component
Manager

Device
D1

Device
D2

Device
Dm

...
Channel
Service a

c

b

Figure 5.1: MDCF components grouped by their logical ICE architecture role and showing
primary hook locations (circles a,b,c).

munication security hooks within the MDCF so that every message sent or received in the

MDCF must pass through one of these hook locations. Specifically within the Channel Ser-

vice, our hooks must fall within the Channel Abstraction. Although the Channel Service is

pictured as being part of the Network Controller in (Figure 5.1), the Channel Abstraction

sender/receiver API is available to all components of the MDCF, including the Supervisor,

apps, devices, and the logger.

By placing our hooks there, we are able to create communication security providers that

plug directly into the channel senders and receivers that all components within the MDCF

must use to communicate. By tightly coupling our providers to senders and receivers, we

ensure that the system will be non bypassable when in use.

45

MIDAS

DDS

Channel
Abstraction

Device
Legitimate
App

Channel
Sender

Sender
Security
Provider

Receiver
Security
Provider

Channel
Receiver

Attacker

Channel
Receiver

Figure 5.2: MDCF channel security providers.

5.3.2 Providers

These providers allow us to gain confidentiality through message encryption, and enforce

and verify the integrity and authenticity of messages using digital signatures or message

authentication codes.

Each channel security provider is able to perform arbitrary transformations on a mes-

sage, so we can encrypt, decrypt, and authenticate messages. During the initialization of a

message sender or receiver, it is bound to a channel security provider, ensuring that security-

related transformations on messages may not be bypassed. Channel security providers come

in pairs – one for sending a message and another for receiving a message. The application of

these providers is on a channel-by-channel basis, making it possible to extend this feature to

provide fine-grained control over how confidentiality, integrity, and authenticity are enforced

for each channel.

Communication security is between a component and the network controller, a direct

secure channel between a device and an app is not supported with this framework. There

are several reasons for this. A device may publish data to multiple apps at the same time.

Creating separate end-to-end secure channels between each device and the app would use

additional device resources. Plain text copies of messages must be available to the Network

46

Controller for a logging system to function properly. This also allows us to implement

the Role-Based Access Control system described in chapter (6), which must be able to sit

between devices and apps so that access control can not be bypassed.

Building Secure Channels

Due to the need to properly generate and distribute keys for communication security providers,

we envision that for devices and apps, the run-time selection of communication security

providers will be driven by which authentication provider is in use. We believe that com-

munication security and authentication providers may be developed together, leading to

collections of providers analogous to TLS cipher suites. Currently, the communication se-

curity providers for a device or app communication session are currently selected according

to which authentication provider is used.

The communication security framework we have built does not enforce a specific mech-

anism for distributing keys to the communication security providers. At this stage, we

leave the logistics of key distribution and key agreement up to the developers of security

providers. However, we have thought of a few possible ways to initialize communication

security providers. One possibility is to derive all of the specific keys for each of the secure

channels that the device or app will need a-priori during the connection-time authentication

for those components. Alternatively, we can set up a secure management channel during

authentication, which is kept open for the duration of the device or app connection to the

MDCF. The Network Controller could then derive keys for other secure channels and send

them across this channel. This is the approach we took with the non-trivial provider we

implemented. Another possible approach is to obtain a single set of keys during authentica-

tion of devices or apps from authentication, and use those keys on demand to initialize the

communication security providers between the Network Controller and those components.

This second approach has the drawback of requiring additional key negotiations if we desire

to assign a different key to each channel a device wishes to use.

47

5.4 Provider Implementation

To date, we have implemented two communication security providers. We first implemented

a NULL communication security provider, which performs no operations on a message.

Next, we implemented a more realistic provider which is based on Java’s built in TLS

implementation.

5.4.1 NULL Provider

The NULL provider served as the first step towards creating a usable interface and for

ensuring that our hooks and framework correctly function before adding the additional

complexity and overhead that come from performing cryptographic transformations of data.

5.4.2 TLS Provider

This TLS-based communication security provider uses a secure channel that was initially

built during device authentication and was passed to the channel security providers from the

TLS authentication provider. Specifically, it uses an instantiation of the java.net.ssl.sslEngine

which was previously used for Authentication. The engine was restricted to using the

TLS_DHE_DSS_WITH_AES_128_CBC_SHA

and was configured to exclusively allow TLS 1.2.

48

Chapter 6

Access Control

6.1 Introduction

In this chapter, we specify a Role-Based Access Control (RBAC)1 system for the MDCF.

This chapter contains two major sections. The first is a requirements specification modeled

on the FAA’s Requirements Engineering Management Handbook.31 The second part of this

chapter consists of remarks on the design for the RBAC system.

6.1.1 Background

Role Based Access Control

We believe that Role-Based Access Control extended with Break Glass functionality is the

best option for controlling access to devices in apps in a MAP. As illustrated in Figure

6.1, RBAC relies on notions of users, roles and permissions. In this work, we look “Flat”

RBAC,1 one of the simpler models of RBAC, that is still considered to be a true RBAC

system.

The following is a brief summary of how an RBAC system functions, based on our survey

of the literature.1 10 32 33 34 A role in RBAC is intended to correspond to the real-life roles

49

Figure 6.1: Flat RBAC1

that exist within an organization. Roles are meant have various permissions assigned to

them. Permissions represent the ability to carry out some operation on an object. One of

the benefits to RBAC is that permissions can be defined to be as fine or coarse grained as

needed for a particular system. The permissions could be on the ability to read or write to

some specific variable, or it could be a higher level operation such as the ability to connect

to a channel on the MDCF. In some models of RBAC, permissions can specify that some

specific action is taken or condition is met when the permission is used. This is called an

obligation. On a basic level, the association of one or more permissions to a role is known as

permission assignment. The systematic creation of roles and assignment of permissions to

those roles, collectively known as role engineering, is recognized as a potentially difficult and

time-consuming task and is outside the scope of this work. The association of a user to one

or more roles, called user assignment, grants the user whatever permissions are associated

with those roles. Note that in some RBAC systems, users must manually choose which roles

they want to assume. This selection is made from the list of roles that user has already

been assigned to, and is intended to help enforce the principle of least privilege.

Break Glass

Ideally, the policy defined for an RBAC system prevents users from acting maliciously or

outside of their official duties without preventing them from accomplishing the tasks they are

responsible for. However, the reality of the health care setting is that the environment can

rapidly change – enforcing least privilege through explicitly defined access control polices can

50

result in situations in which a clinician could be prevented from delivering potentially life-

saving care to patients. In these situations, the need for a clinician to be able to administer

care to a patient outweighs the risks associated with unauthorized access to medical devices

or apps. Based on this, we conclude that the most suitable access control solution for the

MDCF is an RBAC system extended with Break Glass features. The need for a Break Glass

feature to bypass access controls in health IT systems has been recognized for years.35 36

Combining RBAC and Break Glass, also sometimes called “Break The Glass” (BTG), has

been examined before.37 27 The simplest implementation is the creation of a specific user

or role which holds what amounts to root permissions. Other implementations have been

proposed that implement Break Glass separately from the rest of the access control system,

and add granularity of Break Glass permissions37 or context awareness.38 A major theme

of Break Glass systems is that an increase in freedom to access resources is coupled with

a proportional increase in accountability for whatever actions are taken when the glass

is broken. This enhanced accountability may include enhanced monitoring of the user’s

activities, and notifications of a supervisor or administrator.

Other Access Control Models

Pre-dating RBAC are Access Control Lists (ACL), Discretionary Access Control (DAC), and

Mandatory Access Control (MAC). With DAC, users that have access to a given object,

may delegate access to that object or its information.32 The main problem with using DAC

for an ICE-like system is that we do not want to allow access control policy decisions to be

delegated to users. We prefer a centralized approach, in which an administrator defines all

access control polices.

ACLs are commonly found in the file systems for operating systems. The idea behind

ACLs is to attach a list to each file, with entries that indicate that a specific user or group

can perform some action on the file.32 The operating system only allows operations to

be performed on this file if they have been white-listed in the ACL. It has been shown

51

that ACL systems can be configured offer equivalent functionality to a “minimal” RBAC

system.39 However, distributing access control information as it is done with ACLs would

likely be inefficient for ICE-like systems. We prefer RBAC to ACLs because it allows us to

centralize access control information, which we believe will simplify system implementation

and administration.

Mandatory Access Control is intended to control access in a centralized, non overridable

manner.32 A popular example in use today is SELinux, which is used to enforce the principle

of least privilege on Linux processes.28 All access control choices in a MAC system are defined

by the system administrators, whereas in a DAC system, a user may be able to define the

permissions of some object they own. Although MAC has properties that we desire, in that

access control is centralized and mandatory. In its traditional form, we think that it is too

inflexible for the needs of a medical environment. RBAC can provide the same benefits that

MAC does, while remaining more flexible.34

Now, we will briefly discuss some newer access control models have been proposed since

the popularization of RBAC. Attribute-Based Access Control has been proposed as a more

flexible system than RBAC.40 In ABAC, a user has a series of attributes associated with

them. Furthermore, attributes may be based on the environment, or location, or an object

itself. Access to an object is based on whether the user possesses the necessary attributes

to perform an operation. The idea behind ABAC is to reduce the cost and complexity

of using RBAC, by removing the need for role engineering and the assignment of specific

permissions. It has been shown that it is possible to add attributes to RBAC, which may

prove useful but is not addressed in this work.40

There is a variation of ABAC called Policy-Based Access Control (PBAC). PBAC is

an attempt to extend the ABAC model to accommodate the enforcement of abstract poli-

cies (e.g. HIPAA) across large (enterprise) organizations.33 One major difference is that

the fundamental attributes required to access an object in PBAC are the same, regard-

less of whatever other local access controls are in place. Similarly, Risk-Adaptive Access

52

Control (RAdAC) evolved out of ABAC41 so that context can be evaluated to assess risk

when making access control systems. We believe that ABAC variations such as PBAC and

RAdAC are not suitable for our needs owing to their complexity33 and a lack of existing

implementations.

6.2 Requirements

6.2.1 System Overview

The system being specified is the access control system for the Medical Device Coordination

Framework (MDCF). Detailed information about the MDCF as a whole can be found in

the Background section (2). The MDCF a high-assurance middleware system that serves as

a Medical Application Platform. The MDCF also provides a platform for building medical

apps that interact with devices in the form of receiving and viewing data issuing commands

and changing settings.

In this section, we have built our requirements relying on a few basic assumptions about

the MDCF. The devices are assumed to be connected to a single patient, and we assume

that only one user will be actively controlling the system at any given time.

The MDCF consists of two major components — the Supervisor and the Network Con-

troller (NC). The Supervisor is most easily viewed as the front-end. It hosts the user

interfaces for the MDCF, including any MDCF apps. The Network Controller is essentially

the server, routing, and back end components of the MDCF. Within the NC is the underly-

ing message bus and any code related to connecting to and interfacing with devices. Devices

and apps both have to connect to and authenticate with parts of the NC. The MDCF also

supports data logging functionality, which works by copying messages off the message bus

from within the NC, and then sending it off to the external logger.

The purpose of the access control system for the MDCF is to ensure that the MDCF, an

MDCF app, or device being controlled through the MDCF only allows authorized individuals

53

Operator interface

Supervisor app

Message
Bus

RBAC engine

Device

DML

Clinician

Patient

User auth

Users

Supervisor

Network Controller

User
credentials

Log in
confirmation

Device data or
RBAC rejection

Device
data

 Command

Access
control
request

Response
(accept or deny)

Permissions

denied accepted

RolesUser
Management

Figure 6.2: Pictured is a context diagram for the RBAC system.

to issue commands or view data. The access control system must also support a Break Glass

feature that enables clinicians to bypass normal access control restrictions in emergency

situations. This system will rely on a separate subsystem for managing user credentials and

sessions. The access control system enables us to programmatically enforce clinical policy

(and laws), the end result is that this system will be necessary for protecting patient safety,

by helping ensure that only authorized clinical personnel are using the MDCF.

54

6.2.2 System Context

From Figure 6.2, we see that an RBAC system will interact with several other components

of the MDCF. The RBAC system interacts directly with three entities that are part of

the Network Controller: The user management system, DML metadata, and the Channel

Abstraction/Message Bus. The RBAC system also indirectly interacts with the following

entities outside of the Network Controller: Supervisor apps, Supervisor Console/Operator

Interface, and ICE-Compatible devices

6.2.3 System Goals

Goal Title
G1 Unauthorized users should not control devices
G2 Unauthorized users should not control apps
G3 Authorized users should be able to control devices
G4 Authorized users should be able to control apps
G5 Clinicians should be able to use a Break Glass feature
G6 System should operate with minimal user interaction
G7 System should operate with minimal performance overhead
G8 System should allow administrators to define custom access control policies

Table 6.1: High-level goals(G) of the RBAC system

6.2.4 Operational Concepts

We have created use and exception cases in order to describe how we conceive that various

actors will interact with the MDCF and RBAC system. A Summary of the use cases is

provided in Table 6.2, exception cases are in 6.3. Appendix B contains the use and exception

cases listed in the tables. Furthermore, a list of the Actors in this system is located in Table

6.4. In the rest of this section, we examine one of the critical use cases of the system for

illustrative purposes.

55

Use Case Primary Actor Description
B.1.1 Clinician Normal Operation
B.1.2 Clinician Break Glass Mode Operation
B.1.3 Clinician User Log In
B.1.4 Clinician User Log Out
B.1.5 Medical Device Device Connects (First Time)
B.1.6 Clinician Device Disconnects
B.1.7 Clinician App Launch
B.1.8 Clinician App Close
B.1.9 MDCF App Issue Command to Device
B.1.10 Clinician Enter Break Glass Mode
B.1.11 Administrator Exit Break Glass Mode
B.1.12 Medical Device (Break Glass) Device Connect (Unknown Device)
B.1.13 Clinician (Break Glass) Device Disconnect
B.1.14 Clinician (Break Glass) App Launch
B.1.15 Clinician (Break Glass) App Close
B.1.16 MDCF App (Break Glass) Issue Device Command
B.1.17 Administrator Create Role
B.1.18 Administrator Delete Role
B.1.19 Administrator Add Role to User
B.1.20 Administrator Remove Role from User
B.1.21 Administrator Add Permission to Role
B.1.22 Administrator Remove Permission from Role

Table 6.2: Summary of use cases

Issue Command to Device

Related System Goals: G3

Primary Actor: MDCF App

Precondition:

• MDCF is running

• Device is connected

• App is running and bound to Device

• Clinician is logged in

56

Exception Case Primary Actor Description
B.2.1 Clinician User Log In (Failure)
B.2.2 Clinician App Launch (Failure)
B.2.3 Clinician App Close (Failure)
B.2.4 Clinician Device Disconnects (Failure)
B.2.5 MDCF App Issue Command To Device (Failure)
B.2.6 Administrator Exit Break Glass Mode (Failure)

Table 6.3: Summary of exception cases

Actor Name Primary Goals of the Actor
Clinician Deliver care to patient by interacting with devices and apps

Administrator Ensure that clinicians are able to deliver care to patients; Make sure hospital
resources are used properly; Prevent anyone who is not a clinician at that
facility from controlling devices or apps

Patient Receive medical care administered by clinicians
Medical Device Facilitate clinician’s delivery of medical care by performing some medically rel-

evant function (e.g. monitor patient physiological signals, dispense medicine)
MDCF App Augment the capabilities of a medical device by displaying data published by

that device, allow clinician to control and configure devices
RBAC Engine Enforce access control policy for devices and apps in the MDCF

Table 6.4: Actors in the RBAC system

• Clinician is assigned to Role

• Role has Permission

• Permission is for desired command on Device

• The command has not been executed

Postcondition:

• MDCF is running

• Device is connected

• App is running and bound to Device

• Command has been executed

57

Main Success Scenario:

1. Clinician indicates that a command should be issued to Device within app

2. App requests permission to issue command to Device

3. RBAC Engine verifies that Clinician has Role and Role has Permission

4. RBAC Engine approves request

5. RBAC Engine forwards command to Device

6. Device executes command

The greatest need for access control comes from protecting patient safety by preventing un-

trusted/unprivileged individuals from controlling devices that can perform some actuation

on a patient (e.g. administer morphine, respiratory ventilation). The use case we examine

in this section presents a high level view of the interaction between an app and the RBAC

engine that occurs when the app attempts to issue some sort of command to a device.

This command could be anything from changing an alarm range value or to administering

morphine through a PCA pump. Although the Clinician may be the one directly issuing a

command in the app, this use case instead looks at how the app interacts with the RBAC

Engine. Furthermore, commands might be either one-off sporadic commands directly orig-

inating from a user, or automated/scheduled commands from a workflow automation app.

In this use case, we show that a user must be logged in, and that in order for their command

to be executed, the role of that user must hold the permission matching the command they

have attempted to run. In the case of an app autonomously sending commands, there are

two possibilities for handling roles. One possibility is for apps act as users, holding their

own roles. Another option is to control access to a channel that can be used to repeatedly

issue such a command. Despite the importance of controlling access to devices, this is only

one of many use cases involving RBAC.

58

6.2.5 External Entities

The following sections describe the external entities with which the MDCF RBAC system

directly interacts along with any environmental assumptions made about each entity.

We assume that channels between the Supervisor and Network Controller, apps and Net-

work Controller, and devices and Network Controller have mechanisms in place providing

confidentiality, integrity, and authenticity of the data transmitted. These features are nec-

essary to prevent eavesdropping, also in combination with message integrity/authenticity

mechanisms, this prevents circumvention of access control mechanisms from forged messages

and replay attacks. We need a standard way of storing and transmitting access control in-

formation for devices. Each device has a Device Modeling Language (DML) metadata file

associated with it. This metadata file contains information about the features (i.e. data and

commands) a device supports, making it the ideal location for access control information.

These requirements assume the existence of access control information being embedded in

the DML metadata for all devices. This information includes all possible permissions for a

device, with default permission assignments to universally pre-defined roles. Furthermore,

we assume that there is a component in the MDCF which parses access control data from

DML and converts it into a format usable by the RBAC Engine.

We assume the existence of a user management system, including user databases, user

authentication and tracking of user sessions. We need a database of users in the system,

accessible by the RBAC Engine so that we can then do role assignment to those users and

then drive our access control system based on role assignments and permission assignments

to those roles. We assume that mechanisms are in place for authenticating users. Access

control depends on a reliable user authentication system. Without it, there is no guarantee

that the person associated with a user account is the intended person. We assume that the

user management system keeps track of which user(s) are logged in at any given moment.

We want to be sure of which user is using the MDCF, so that we can make correct access

control decisions based on the roles and permissions associated with that user.

59

We assume that there is some mechanism that prevents individuals other than the clin-

ician currently logged into to the MDCF from using the clinician’s user account when that

clinician is not actively using the MDCF Supervisor Console. We want to be sure that an

unauthorized person cannot easily control apps and devices using the clinician’s already

logged in account (e.g. the clinician logs in, then steps out of the room briefly causing the

Supervisor Console to automatically lock until that clinician returns or someone else logs

in.) We assume that the Supervisor Console has some means of displaying feedback from the

RBAC Engine to a user. We need to be able to inform users when an operation is prevented

by the RBAC Engine, and when the system in in Break Glass Mode. We assume that there

is a way, through the Supervisor Console to enter and exit Break Glass mode. Clinicians

will primarily interact with the MDCF through the Supervisor Console, making it the con-

venient and logical location for the Break Glass controls. We assume the existence of an

Administrative Console, either as a part of the Supervisor Console, or as a separate entity.

The Administrative Console allows a system administrator to change MDCF configuration

and security policy settings. An Administrative Console will allow administrators to define

security policy without complicating the rest of the Clinician-facing Supervisor Console.

6.2.6 Requirements for the MDCF Access Control System

In this section, we define high level requirements for the Role-Based Access Control func-

tionality. These requirements are duplicated in appendix B in a list format that may be

easier for quickly finding individual requirements.

The first several requirements for our system are basic needs common to any RBAC

system. Essentially, if we are going to create a Role-Based Access Control system, we need

to be able to handle users, roles, and permissions. Specifically: The RBAC system shall

store and maintain roles; The RBAC system shall store and maintain permissions; The

RBAC system shall store and maintain role assignments; The RBAC system shall store

and maintain permission assignments. These requirements ensure that we can maintain the

60

basic information needed to make access control decisions using a Flat RBAC model.

The next collection of requirements we define are all related to the establishment and

management of roles, permissions, user assignments, and permission assignments. Clinical

environments where MAPs like the MDCF will be deployed may all have different organiza-

tional structures and operating procedures. Because of this, administrators need to be able

to create custom roles to match the needs of their organization. In general, if we are going to

support the creation and maintenance of custom access control policies, the system needs to

provide some way to actually manage all of the access control artifacts (roles, permissions,

users) and the relationships between those artifacts. Thus, the RBAC system shall provide a

means for managing roles, permissions, user assignments, and permission assignments. So

far, all of the requirements we have presented describe basic functionality essential to any

RBAC system. However, the next requirement strays from the typical RBAC conventions

— the MDCF must function as a plug-and-play system, so there needs to be a default set of

roles that are universally present in any MDCF system or device. Without either common

roles across all systems or some other universal way of grouping permissions, an unknown

device may not be able to automatically work with a particular deployment of the MDCF.

This is because there will be no way for it to comply with any custom access control policies

enforced for that system. Therefore, the RBAC system shall include default roles and default

permission assignments for each device. Also resulting from the plug-and-play nature of the

MDCF, is our requirement that the RBAC system shall automatically gather access control

data from DML for devices and apps. As we previously mentioned in the External Entities

section, devices in the MDCF already have DML metadata files that contain information

about the specific features that device offers and app DML specifies feature requirements.

Thus, we should place our access control information in this DML file, in the form of permis-

sions that correspond to device features which are assigned to the universal/default roles.

For a device to automatically work with the MDCF, it will gather the permissions from

DML for that device and either directly use the default roles, or perhaps rely on some set

61

of heuristics for automatically assigning device permissions to custom roles.

The final collection of requirements specific to the RBAC part of our system are all

related to specific actions that a user of a MAP might take which could potentially impact

the safety or privacy of patients. The first of these requirements captures one of the main

purposes of our system — we need to restrict the ability to control devices. A device

may be responsible for some form of actuation on a patient (e.g. artificial respiration with a

ventilator), so ensuring that the ability to send commands to devices is limited to authorized

users is absolutely essential for patient safety. Hence, The RBAC system shall prevent a

command from being sent to a device unless the sender has a role with permission to send

the command. Because the primary form of interaction with devices and sensitive patient

data is through apps, we also need to control the access to apps. Users should not be able

to launch, use, or close an app unless they hold the privileges necessary for controlling the

devices that app uses and viewing the data displayed by that app. Specifically, the RBAC

system shall prevent a user from launching, using, or closing an app unless the user has a

role with permission to launch the app. Apps may potentially be responsible for ongoing or

repetitive tasks that are medically relevant, thus closing an app can be a critical operation

that should be restricted. For exactly the same reason, the RBAC system shall prevent a

user from disconnecting a device unless the user has a role with permission to disconnect the

device, since devices may be associated to apps and may be executing some sort of medically

relevant task that relies on its connection to the MDCF.

6.2.7 Requirements for Break Glass System

The Break Glass function bypasses the normal access restrictions imposed by the Role-

Based Access Control function, allowing clinicians to quickly provide care in an emergency

situation that deviates from what is typical in the environment the MDCF is deployed in.

The main difference here from other Break Glass systems comes down to this being used to

control access to medical devices on a publish-subscribe middleware system.

62

The first requirement is fairly obvious: There needs to be a way to actually “break the

glass” so that we can enter Break Glass mode. In other words, the Break Glass system shall

allow users to activate Break Glass mode. Similarly, we need some way to exit Break Glass

mode. As we discussed in the last section, one of the most important functions of the RBAC

system is to restrict control of devices. This restriction of device control may be problematic

if, for instance, a patient is having an emergency and the only clinician near them does not

have the permissions needed to control some device needed to address the problem. Because

of this, the Break Glass system shall allow full, unrestricted control of devices while in Break

Glass mode. For the same reason, in order to deal with an emergency/exceptional event,

clinicians should be able to launch, use, and close apps as needed to deliver care to the

patient while the MDCF is is in Break Glass mode, regardless of their normal roles.

Our last requirement is a result of the architecture of the MDCF — components must

communicate across channels and functionality is somewhat decoupled. The Break Glass

system needs to notify other components of the MDCF that a Break Glass scenario is

occurring so that the other components may execute whatever special Break Glass functions

they are responsible for. Specifically, the Break Glass system shall broadcast a notification

when Break Glass mode is entered or exited. A motivating example for this broadcast is

that the logger may need to behave differently during a Break Glass scenario by recording

more information so that users are held accountable for their actions.

6.3 Design

Design, in this section, refers to a high level description of the features provided the RBAC

system, the location of system components within the conceptual architecture of the MDCF,

and the relationships between components which implement those features. This section

explores the design-related concerns of the access control system which came up during the

creation of the requirements section. The intention of this is assist future efforts in building

63

an actual access control system in the MDCF or other MAPs. Our proposed design is split

into different levels, each level builds upon the lower levels, and unless otherwise stated,

whatever applies to Level 1 also applies to Level 2 and so on. This proposed design would

would be implemented in stages corresponding to these levels.

6.3.1 Level 1: Minimal Implementation

We believe that the initial implementation of the access control system should be kept as

simple as possible. Thus, we suggest that a Flat RBAC (6.1) model is used at least initially.

This initial implementation will only support a set of pre-defined roles (e.g. Administrator,

Clinician, Surgery, Anesthesiology).

Break Glass can be initially implemented as an additional default role, which holds

all permissions. The assignment to this role would be temporary, and should be removed

from the user when Break Glass mode is executed. When Break Glass mode is activated

or deactivated, an announcement should be broadcast to other components so that they

can execute Break Glass logic (i.e. enhanced logging, user interface indicator, notify clinic

supervisor). DML for devices should contain an annotation which enumerates all the per-

missions for the device. Permissions may initially be defined in terms of the ability to either

read/write/execute some DML capability, or in the ability to subscribe to the exchanges

necessary to access device capabilities. Similarly, just as the DML for apps specifies ca-

pability requirements for that app, so will the access control requirements for the app be

derived. If the app requires some set of capabilities to operate, then it also requires that a

user launching, using, or closing that app to have permissions to use those capabilities. If

the user lacks permissions to use all features of the app, they are not allowed to access it at

all. This should not be a problem, since only one user can use the system at a time at this

level. If the user logs out, all of the apps they launched will be closed. In this system there

are no databases aside from perhaps a user database. The default roles can be hard coded

into the system. Permissions and role assignments are pulled from the DML for devices and

64

apps when they are launched/connected. These permissions are stored in memory while the

device is connected, but are in not permanently cached/stored (there are no databases).

For now, we will assume that the Supervisor and Network Controller are both running

on the same hardware. Since there is only a single user, and the user management system

controls the initial access to the Clinician Console, we can simply query the user management

system to see who the current user is when an access control decisions must be made. A

more distributed version of the MDCF, might rely on some sort of proof of identity such as

a token issued by the user management system that is unique to a given user for a given

session (and which expires after a set amount of time). However, design of that system is

outside of the scope of this work.

At this level, because only a single user is ever able to use the system at a time —

access control can be limited to restrictions on launching devices. The access control system

here only does two things: control the launching of apps and support rudimentary Break

Glass. No administrative support features are necessary at this initial level because the

access control policies can not be customized.

6.3.2 Level 2: Customized Local Security Policy

The next step in implementing the MDCF access control system is to support the creation

of customized security policy. Specifically, this means that an administrator is able to create

roles and assign permissions to those roles.

This level requires the existence of Administrative tools for managing custom local RBAC

policy. Furthermore, this requires storage of roles and permissions by the RBAC system.

Storage of roles and permissions points to the addition of a database to the RBAC system.

With this storage in place, at this level, we would also start to cache the permissions

of devices during their first connection to the MDCF, removing the need to gather this

information from devices during subsequent connections. The intention here is to speed up

the connection process for “known” devices, similar to what we propose in the certification

65

framework (chapter 3).

The default roles (including Break Glass) from Level 1, would also be stored in the

databases, replacing the original hard-coded implementation. Access control decisions will

be made entirely based on data retrieved from the user management system and the role

and permission storage. Because of this, local policy either has to be defined by directly

manipulating the policy databases, or through some intermediate format. One possibility

is to adopt the eXtensible Access Control Markup Language (XACML)42 or some subset of

it for defining access control in the MDCF. XACML is a standardized markup language for

declaring access control policy, and has been used by other systems combining RBAC and

Break Glass features.27 37 If XACML or some other intermediate representation of access

control policy information is used, the Administrative Console of the MDCF will need to

facilitate this, which may prove to be a significant undertaking on its own.

Plug and play with custom policies

A customized security policy in the MDCF raises the issue: how do we support plug and play

functionality for unknown devices and apps while enforcing a customized security policy?

An administrator could try to define policy up-front for some set of generic DML schemas for

common classes of devices and apps. However, if new types of components are connected, or

if some component offers additional functionality, there needs to be some way to deal with

that. We either need to support the use of components for which users only have partial

permissions, or come up with some automatic way of performing permission assignment to

custom roles.

6.3.3 Level 3: Multiple Users

At this level we introduce multiple simultaneous users. The main difference here is that a

user can launch an app and leave it running while another user accesses the system too.

This, of course, relies on a user management system that supports this. For instance, one

66

user logs in and launches an app and then steps away/locks the console. After this happens,

a different user logs in, and accesses the app(s) launched by the previous user.

An app is only launched if the user launching it has the permissions the app requires.

For another user to access that app, they must also have those permissions. This will require

the creation of a message format for access control requests. The message should contain:

• User ID

• User session token (place holder)

• Subject of the request

• Unique ID for operation requested

Although at this level, it may only be used for gaining access to apps launched by other

users, this access control message may be more important if finer-grained access control

features are to be implemented later on. A system like we describe here has very coarse-

grained permissions, a more complex system may allow users to have partial access to device

or app features. This sort of system may require access control decisions to be made for

each command when the app or device is only partially accessible to a user.

6.3.4 Level 4: More Granularity

The system described in the previous levels provides very coarse grained access control.

Accommodating partial access to apps and devices would give us more granularity. An even

finer grained system could be created by extending our RBAC system with attributes.40 For

example, there could be attributes which capture which part of a care facility the clinician

is assigned to, or that the clinician is scheduled to be working that day. These attributes

are determined by querying a scheduling system at the care facility. The access control

requirements for a device or app could then be extended to specify that only the clinicians

67

assigned to that patient, that are currently scheduled to be working are able to use devices

or apps connected to that patient.

The system might also be expanded at this level to support a more complex version

of RBAC, by explicitly handling user sessions and obligations. The system described in

the previous levels announces that glass has broken, and then we assume other components

respond appropriately. This interaction could be more explicitly represented as an obligation

attached to Break Glass permissions.

The Break Glass system could also be made more granular. Instead of granting un-

restricted access to everything right away, we could implement a system that only grants

access to specific features requested by the glass-breaker. Two different approaches to this

can be seen in the BTG-RBAC Model,37 and Rumpole.38

68

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Although the use of Medical Application Platforms may result in a net improvement to

patient safety, they also carry risks to patient safety and privacy. We have described a

collection of security features for MAPs in order to address some of these risks. The work

on these security features is meant to serve as the starting point for a comprehensive security

architecture for MAPs.

We began by presenting a system for ensuring the trustworthiness of medical devices

connecting to the MDCF. In order to prove that a device is trustworthy, we use a chain of

X.509 certificates that serve as non-forgeable proof of regulatory approval, safety testing,

compliance testing, and device identity. Next, we described the design and implementation

of a flexible, modular device authentication system into the Medical Device Coordination

Framework. We evaluated our authentication system by examining the complexity and

performance of proof-of-concept device authentication providers. We then discussed the

creation of a communication security framework in the MDCF. This system facilitates the

implementation and deployment of communication security providers that provide data

confidentiality, integrity, and authenticity. The final topic we addressed in this work was

69

access control. Specifically, we defined requirements and a high level design for a system

combining Role-Based Access Control (RBAC) with Break Glass features.

7.2 Future Work

A great deal of work remains to be done in order for this security architecture to be fully

realized. Much of this work requires additional implementation and/or evaluation work to

be carried out. The certificate authoring tool we described at the end of chapter 3 needs

to be completed. Server-side (Network Controller) verification of certificate chains in the

MDCF also remains to be implemented. This could be implemented using a specially built

pair of authentication providers.

The communication security system needs the implementation of practical communica-

tion security providers that may be used when TLS authentication is not used. Furthermore,

we believe that the communication security framework should include additional features

to streamline the handling of cryptographic keys. This would likely involve storing and

retrieving keys from the MDCF device registry. We did not look into how authentication,

communication security, and access control systems will interact with the real-time proper-

ties of the MDCF. This interaction between real-time guarantees and security may warrant

additional evaluation and implementation efforts.

Our contribution on the topic of access control was limited to studying the background,

drafting initial requirements, and describing a preliminary design for the system. A more

complete design for the access control system needs to be created. This design would ideally

address the issue of mapping new device or app permissions to the roles that exist in a custom

access control policy. It should also define the means by which customized access control

policies are defined (e.g. XACML).

After the creation of a more detailed design, the system will need to be implemented.

The design and implementation efforts for the access control system will help verify the

70

work presented here and may also lead to a revision or extension of the requirements we

have presented. Once the access control system is implemented, a thorough evaluation will

be necessary.

Before any meaningful implementation of access control can be carried out, some ad-

ditional features need to be added to the MDCF. First of all, a system for managing user

credentials, logins, and sessions needs to be implemented. The access control system directly

depends on such a system. Next, there needs to be support for access control functionality

within the user interface components (Supervisor/Clinician Console). These UI additions

may be implemented in steps corresponding to the underlying access control system features

they support.

Furthermore, work to ensure that logging is handled in a privacy and accountability

preserving matter needs to be conducted. Future work may also address how to leverage

the security features of the MDCF and the logging system to create strong mechanisms for

enforcing accountability (i.e. non-repudiation).

71

Bibliography

[1] Ravi Sandhu, David Ferraiolo, and Richard Kuhn. The nist model for role-based access

control: Towards a unified standard. In ACM Workshop on Role-based access control,

2000.

[2] John Hatcliff, Andrew King, Insup Lee, Alasdair MacDonald, Anura Fernando, Michael

Robkin, Eugene Y. Vasserman, Sandy Weininger, and Julian M. Goldman. Rationale

and architecture principles for medical application platforms. In International Confer-

ence on Cyber-Physical Systems (ICCPS), 2012.

[3] John Hatcliff, Eugene Vasserman, Sandy Weininger, and Julian Goldman. An overview

of regulatory and trust issues for the integrated clinical environment. In Proceedings

of the Joint Workshop On High Confidence Medical Devices, Software, and Systems &

Medical Device Plug-and-Play Interoperability (HCMDSS/MD PnP), 2011.

[4] Andrew King, Sam Procter, Daniel Andresen, John Hatcliff, Steve Warren, William

Spees, Raoul Jetley, Paul Jones, and Sandy Weininger. An open test bed for medical

device integration and coordination. In Proceedings of the 31st International Conference

on Software Engineering (ICSE), pages 141–151, 2009.

[5] David Arney, Sandy Weininger, Susan F. Whitehead, and Julian M. Goldman. Sup-

porting medical device adverse event analysis in an interoperable clinical environment:

Design of a data logging and playback system. In International Conference on Biomed-

ical Ontology (ICBO), July 2011.

[6] E.Y. Vassserman and J. Hatcliff. Foundational security principles for medical applica-

72

tion platforms. In Proceedings of the International Workshop on Information Security

Applications, August 2013.

[7] Li Gong and Gary Ellison. Inside Java(TM) 2 Platform Security: Architecture, API

Design, and Implementation. Pearson Education, 2nd edition, 2003. ISBN 0201787911.

[8] OpenSSL. OpenSSL: Documents, ssl(3). https://www.openssl.org/docs/ssl/ssl.

html, January 2012.

[9] C. Salazar and E.Y. Vassserman. Retrofitting communication security into a pub-

lish/subscribe middleware platform. In International Workshop on Software Engineer-

ing in Health Care (SEHC), July 2014.

[10] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-

based access control models. In IEEE Computer, volume 29, 1996.

[11] ICEMDPnP. Medical Device Plug-and-Play (MD PnP) Integrated Clinical Environ-

ment (ICE) website. http://mdpnp.org/ICE.html, 2014.

[12] ASTM Committee F-29, Anaesthetic and Respiratory Equipment, Subcommittee 21,

Devices in the integrated clinical environment. Medical devices and medical systems —

essential safety requirements for equipment comprising the patient-centric integrated

clinical environment (ICE), 2009.

[13] Andrew King, Dave Arney, Insup Lee, Oleg Sokolsky, John Hatcliff, and Sam Proc-

ter. Prototyping closed loop physiologic control with the medical device coordination

framework. In Proceedings of the ICSE Workshop on Software Engineering in Health

Care (SEHC), pages 1–11, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-973-2.

doi: 10.1145/1809085.1809086.

[14] MDCF. Medical Device Coordination Framework (MDCF) project. http://mdcf.

santos.cis.ksu.edu.

73

https://www.openssl.org/docs/ssl/ssl.html
https://www.openssl.org/docs/ssl/ssl.html
http://mdpnp.org/ICE.html
http://mdcf.santos.cis.ksu.edu
http://mdcf.santos.cis.ksu.edu

[15] B. Snyder, D. Bosanac, and R. Davies. ActiveMQ in Action. Manning Pubs Co Series.

Manning Publications, 2011. ISBN 9781933988948. URL http://books.google.com/

books?id=_jjCPwAACAAJ.

[16] J.K. Millen. A resource allocation model for denial of service. In IEEE Symposium on

Security and Privacy, 1992.

[17] K.K. Venkatasbramanian, S.K.S. Gupta, R.P. Jetley, and P.L. Jones. Interoperable

medical devices communication security issues. In IEEE Pulse, September 2010.

[18] K.K. Venkatasbramanian. The chronicles of interoperability: Failures, safety, and se-

curity. In AAMI Horizons.

[19] K.K. Venkatasbramanian, E.Y. Vassserman, O. Sokolsky, and I. Lee. Security and

interoperable-medical-device systems, part 1. In IEEE Security and Privacy Magazine,

November 2012.

[20] E.Y. Vassserman, K.K. Venkatasbramanian, O. Sokolsky, and I. Lee. Security and

interoperable-medical-device systems, part 2: Failures, consequences and classification.

In IEEE Security and Privacy Magazine, September 2012.

[21] D.F. Kune, K.K. Venkatasbramanian, and E.Y. Vasserman. Toward a safe integrated

clinical environment: A communication security perspective. In Workshop on Medical

Communication Systems (MedCOMM).

[22] C.R. Taylor, K.K. Venkatasbramanian, and C.A. Shue. Understanding the security of

interoperable medical devices using attack graphs. In Conference on High Confidence

Networked Systems (HiCoNS).

[23] Food and Drug Administration. Unique device identification (UDI).

http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/

UniqueDeviceIdentification/, 2014.

74

http://books.google.com/books?id=_jjCPwAACAAJ
http://books.google.com/books?id=_jjCPwAACAAJ
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/UniqueDeviceIdentification/
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/UniqueDeviceIdentification/

[24] Internet Engineering Task Force. Internet X.509 public key infrastructure certificate

and certificate revocation list (CRL) profile. http://tools.ietf.org/html/rfc5280,

2008.

[25] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David Wagner.

A survey of mobile malware in the wild. In Proceedings of the ACM Workshop on

Security and Privacy in Smartphones and Mobile Devices (SPSM), 2011. ISBN 978-

1-4503-1000-0. doi: 10.1145/2046614.2046618. URL http://doi.acm.org/10.1145/

2046614.2046618.

[26] Ross Anderson. Security Engineering: A Guide to Building Dependable Distributed

Systems, Second Edition. Wiley, 2008.

[27] Achim D. Brucker and Helmut Petritsch. Extending access control models with break-

glass. In Proceedings of the ACM symposium on Access control models and technologies,

2009. ISBN 978-1-60558-537-6. doi: 10.1145/1542207.1542239. URL http://doi.acm.

org/10.1145/1542207.1542239.

[28] Bill McCarty. SELinux: NSA’s open source security enhanced Linux. O’Reilly, 2005.

[29] R. Glenn and S. Kent. The NULL encryption algorithm and its use with IPsec, 1998.

[30] Christoph L. Schuba, Ivan V. Krsul, Markus G. Kuhn, Eugene H. Spafford, Aurobindo

Sundaram, and Diego Zamboni. Analysis of a denial of service attack on TCP. In IEEE

Symposium on Security and Privacy, 1997.

[31] Federal Aviation Administration. Requirements Engineering Management Handbook.

2009.

[32] Ravi S. Sandhu and Pierangela Samarati. Access control: Principles and practice. In

IEEE Communications Magazine, 1994.

[33] NIST. A survey of access control models. In Privilege Management Workshop, 2009.

75

http://tools.ietf.org/html/rfc5280
http://doi.acm.org/10.1145/2046614.2046618
http://doi.acm.org/10.1145/2046614.2046618
http://doi.acm.org/10.1145/1542207.1542239
http://doi.acm.org/10.1145/1542207.1542239

[34] Qamar Munawer Sylvia Osborn, Ravi Sandhu. Configuring role-based access control

to enforce mandatory and discretionary access control policies. In ACM Transactions

on Information and System Security, volume 3, 200.

[35] How to break access control in a controlled manner. A. ferreira and r. cruz-correia and l.

antunes and p. farinha and e. oliveira-palhares and d.w. chadwick and a. costa-pereira.

In IEEE Symposium on Computer-Based Medical Systems (CBMS), 2006.

[36] HIPAASECURITY:URL. Break Glass Procedure: Granting Emergency

Access to Critical ePHI Systems. http://hipaa.yale.edu/security/

break-glass-procedure-granting-emergency-access-critical-ephi-systems,

2014.

[37] Ana Ferreira, David Chadwick, Pedro Farinha, Ricard Correia, Gansen Zao, Rui Chilro,

and Luis Antunes. How to securely break into rbac: the btg-rbac model. In Annual

Computer Security Applications Conference (ACSAC), 2009.

[38] Srdjan Marinovic, Robert Craven, Jiefei Ma, and Naranker Dulay. Rumpole: A flexible

break-glass access control model. In ACM Symposium on Access Control Models and

Technologies (SACMAT), 2011.

[39] John Barkley. Comparing simple role based access control models and access control

lists. In ACM workshop on Role-based access control, 1997.

[40] D. Richard Kuhn, Edward J. Coyne, and Timothy R. Weil. Adding attributes to

role-based access control. In IEEE Computer, volume 43, 2010.

[41] Michael H. Davis Alan H. Karp, Harry Haury. From abac to zbac: The evolution of

access control models. In HP Laboratories Tech Report, 2009.

[42] OASIS. OASIS eXtensible Access Control Markup Language (XACML) TC. https:

//www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml, 2014.

76

http://hipaa.yale.edu/security/break-glass-procedure-granting-emergency-access-critical-ephi-systems
http://hipaa.yale.edu/security/break-glass-procedure-granting-emergency-access-critical-ephi-systems
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

Appendix A

Authentication Framework

Performance Data

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

5	

0	 50	 100	 150	 200	 250	 300	

%
	 C
PU

	 u
.l
iz
a.

on
	

Time	 since	 system	 start	

CPU	 usage	 without	 authen.ca.on	

control	

TLS	

DSA	 +	 DH	

DSA	

77

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

5	

0	 50	 100	 150	 200	 250	 300	

%
	 C
PU

	 u
.l
iz
a.

on
	

Time	 since	 system	 start	

CPU	 usage	 without	 authen.ca.on	

control	

TLS	

DSA	 +	 DH	

DSA	

0%	

1%	

2%	

3%	

4%	

5%	

6%	

7%	

8%	

9%	

10%	

0	 50	 100	 150	 200	 250	 300	

%
	 M

em
or
y	
u4

liz
a4

on
	

Time	 since	 system	 start	

Memory	 usage	 without	 authen4ca4on	

control	

TLS	

DSA	 +	 DH	

DSA	

78

0%	

1%	

2%	

3%	

4%	

5%	

6%	

7%	

8%	

9%	

10%	

0	 50	 100	 150	 200	 250	 300	

%
	 M

em
or
y	
u4

liz
a4

on
	

Time	 since	 system	 start	

Memory	 usage	 with	 authen4ca4on	

control	

TLS	

DSA	 +	 DH	

DSA	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

0	 50	 100	 150	 200	 250	 300	

Re
ad

s	

Seconds	

Disk	 Read,	 340	 devices	 not	 authen=cated	
control	

TLS	

DSA	 +	 DH	

DSA	

79

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

0	 50	 100	 150	 200	 250	 300	

Re
ad

s	

Seconds	

Disk	 Read,	 340	 devices	 authen=cated	
control	

TLS	

DSA	 +	 DH	

DSA	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

0	 50	 100	 150	 200	 250	 300	

W
rit
es
	

Seconds	

Disk	 Write,	 340	 devices	 not	 authen<cated	
control	

TLS	

DSA	 +	 DH	

DSA	

80

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

0	 50	 100	 150	 200	 250	 300	

W
rit
es
	

Seconds	

Disk	 Write,	 340	 devices	 authen<cated	
control	

TLS	

DSA	 +	 DH	

DSA	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

0	 50	 100	 150	 200	 250	 300	

#	
of
	 T
ra
ns
fe
rs
	

Seconds	

Disk	 Xfer,	 340	 devices	 not	 authenAcated	
control	

TLS	

DSA	 +	 DH	

DSA	

81

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

0	 50	 100	 150	 200	 250	 300	

#	
of
	 T
ra
ns
fe
rs
	

Seconds	

Disk	 Xfer,	 340	 devices	 authenAcated	
control	

TLS	

DSA	 +	 DH	

DSA	

0	

200	

400	

600	

800	

1000	

1200	

1400	

0	 50	 100	 150	 200	 250	 300	

Re
ad

s	

Seconds	

Net	 Read,	 340	 devices	 not	 authen:cated	
control	

TLS	

DSA	 +	 DH	

DSA	

82

0	

200	

400	

600	

800	

1000	

1200	

1400	

0	 50	 100	 150	 200	 250	 300	

Re
ad

s	

Seconds	

Net	 Read,	 340	 devices	 authen:cated	
control	

TLS	

DSA	 +	 DH	

DSA	

83

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

0	 50	 100	 150	 200	 250	 300	

W
rit
es
	

Seconds	

Net	 Write,	 340	 devices	 authen;cated	
control	

TLS	

DSA	 +	 DH	

DSA	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

10000	

0	 50	 100	 150	 200	 250	 300	

Pa
ck
et
s	 T

ra
ns
fe
rr
ed

	

Seconds	

Net	 Packet,	 340	 devices	 not	 authen@cated	
control	

TLS	

DSA	 +	 DH	

DSA	

84

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

10000	

0	 50	 100	 150	 200	 250	 300	

Pa
ck
et
s	 T

ra
ns
fe
rr
ed

	

Seconds	

Net	 Packet,	 340	 devices	 authen@cated	
control	

TLS	

DSA	 +	 DH	

DSA	

85

Appendix B

Role Based Access Control System

Use Cases

B.1 Use Cases

B.1.1 Normal Operation

Related System Goals: G1, G2, G3, G4

Primary Actor: Clinician

Precondition:

• MDCF is running

Postcondition:

• MDCF is running

Main Success Scenario:

1. Clinician logs in (B.1.3)

2. Clinician connects device (B.1.5)

86

3. Clinician launches app (bound to device) (B.1.7)

4. Clinician views data in app

5. Clinician issues command to device through app (B.1.9)

6. Clinician closes app (B.1.8)

7. Clinician disconnects device (B.1.6)

8. Clinician logs out (B.1.4)

B.1.2 Break Glass Mode Operation

Related System Goals: G5

Primary Actor: Clinician

Precondition:

• MDCF is running

• MDCF is not in Break Glass Mode

Postcondition:

• MDCF is running

• MDCF is in Break Glass Mode

Main Success Scenario:

1. Clinician logs in (B.1.3)

2. Clinician connects device

3. Clinician launches app (bound to device) (B.1.7)

4. Clinician views data in app

87

5. Clinician issues command to device through app(Failure) (B.2.5)

6. Clinician enters Break Glass Mode (B.1.10)

7. Clinician issues command to device (Break Glass) (B.1.16)

8. Clinician closes app (B.1.15)

9. Clinician disconnects device (B.1.13)

10. Administrator exits Break Glass Mode (B.1.11)

Alternate Scenario:

1. Clinician enters Break Glass Mode (B.1.10)

2. Clinician connects device (B.1.12)

3. Clinician launches app (bound to device) (B.1.14)

4. Clinician views data in app

5. Clinician issues command to device (Break Glass) (B.1.16)

B.1.3 User Log In

Related System Goals: G1, G2, G3, G4

Primary Actor: Clinician

Precondition:

• MDCF is running

• Clinician is not logged in

Postcondition:

• MDCF is running

88

• Clinician is logged in

Main Success Scenario:

1. Clinician enters credentials into Supervisor

2. Credentials transmitted to User Authentication module

3. User Authentication module sends log in confirmation to Supervisor

4. Supervisor starts user session for the Clinician

B.1.4 User Log Out

Related System Goals: G1, G2, G3, G4

Primary Actor: Clinician

Precondition:

• MDCF is running

• Clinician is logged in

Postcondition:

• MDCF is running

• Clinician is not logged in

Main Success Scenario: (without App permissions or roles)

1. Clinician issues logout command in Supervisor

2. All running Apps are closed (B.1.8)

3. Network Controller and Supervisor terminates user session for the Clinician.

Main Success Scenario: (App permissions and roles)

89

1. Clinician issues logout command in Supervisor

2. Apps continue running unless explicitly terminated

3. Supervisor terminates user session for the Clinician.

B.1.5 Device Connects (first time)

Related System Goals: G3, G8

Primary Actor: Clinician

Precondition:

• MDCF is running

• Device is not connected to MDCF

• Network Controller has no DML metadata cached for this device

Postcondition:

• MDCF is running

• Device is connected to MDCF

• Network Controller caches DML metadata for this device

Main Success Scenario:

1. Device is physically plugged into MDCF network switch or router

2. Device is powered on

3. Device runs through connection process (including authentication) with the Network

Controller

4. Network Controller creates cached copies of the DML metadata and certificates for

that device

90

5. RBAC Engine stores permissions and role-permission bindings for device

6. (Optional) permissions are automatically assigned to non-default roles based on local

RBAC policy

7. Device is ready to use

B.1.6 Device Disconnects

Related System Goals: G3, G8

Primary Actor: Clinician

Precondition:

• MDCF is running

• Device is connected to the MDCF

• Device may be bound to one or more apps

Postcondition:

• MDCF is running

• Device is not connected to the MDCF

• Device is no longer bound to any apps

Main Success Scenario:

1. User issues command to disconnect Device within Supervisor Console

2. Supervisor console requests to perform disconnection Operation

3. RBAC Engine approves request to disconnect device

4. RBAC Engine forwards disconnection command to device manager

5. Device manager disconnects device

91

B.1.7 App Launch

Related System Goals: G3, G4

Primary Actor: Clinician

Precondition:

• MDCF is running

• Clinician is logged in

• Device is connected

• Device is compatible with App

• App is not running and is not bound to Device

Postcondition:

• MDCF is running

• Clinician is logged in

• Device is connected

• Device is compatible with App

• App is running and bound to Device

Main Success Scenario:

1. Clinician issues command in Supervisor to launch App and bind it to Device

2. App binding/launching request is sent to RBAC Engine

3. RBAC Engine verifies that Clinician has a Role that has the permission needed to

launch App

4. RBAC Engine forwards command to other components to execute App launch process

92

5. App components are initialized

6. Supervisor displays App UI to Clinician

B.1.8 App Close

Related System Goals: G3, G4

Primary Actor: Clinician

Precondition:

• MDCF is running

• Clinician is logged in

• App is running

• Device is bound to App

Postcondition:

• MDCF is running

• Clinician is logged in

• App is not running

• Device is not bound to App

Main Success Scenario:

1. Clinician issues command to close App within Supervisor console

2. Supervisor requests permission to close App from RBAC Engine

3. RBAC Engine verifies Clinician has a Role with permission to close App, sends re-

sponse to supervisor

93

4. App terminate message sent to Network Controller

5. App binding to device is removed

6. App UI is closed on Supervisor

B.1.9 Issue Command to Device

Related System Goals: G3

Primary Actor: MDCF App

Precondition:

• MDCF is running

• Device is connected

• App is running and bound to Device

• Clinician is logged in

• Clinician is assigned to Role

• Role has Permission

• Permission is for desired command on Device

• The command has not been executed

Postcondition:

• MDCF is running

• Device is connected

• App is running and bound to Device

• Command has been executed

94

Main Success Scenario:

1. Clinician indicates that a command should be issued to Device within App

2. App requests permission to issue command to Device

3. RBAC Engine verifies that Clinician has Role and Role has Permission

4. RBAC Engine approves request

5. RBAC Engine forwards command to Device

6. Device executes command

B.1.10 Enter Break Glass Mode

Related System Goals: G5

Primary Actor: Clinician

Precondition:

• MDCF is running

• MDCF is not in Break Glass mode

Postcondition:

• MDCF is running

• MDCF is in Break Glass mode

Main Success Scenario:

1. User issues command to enter Break Glass mode from Supervisor Console

2. Supervisor console sends message to RBAC Engine indicating Break Glass mode is

active

3. Supervisor console visually indicates that Break Glass mode is active

95

B.1.11 Exit Break Glass Mode

Related System Goals: G5

Primary Actor: Administrator

Precondition:

• MDCF is running

• MDCF is in Break Glass mode

• Administrator is logged in

Postcondition:

• MDCF is running

• MDCF is not in Break Glass mode

Main Success Scenario:

1. Administrator issues command to exit Break Glass mode from Supervisor console

2. Supervisor console sends request to exit Break Glass mode to RBAC Engine

3. RBAC Engine approves request to exit Break Glass mode

4. RBAC Engine announces return to normal MDCF operation

5. (If App roles present) Apps launched during Break Glass operation continue to run,

using default roles

6. (otherwise) Apps launched while MDCF was in Break Glass mode are terminated

7. Unknown Devices connected during Break Glass mode are disconnected

8. Supervisor Console removes visual indication of Break Glass mode

96

B.1.12 (Break Glass) Device Connect (Unknown Device)

Related System Goals: G3, G5

Primary Actor: Clinician

Precondition:

• MDCF is running

• MDCF is in Break Glass mode

• Device is not connected to MDCF

Postcondition:

• MDCF is running

• MDCF is in Break Glass mode

• Device is connected to MDCF

Main Success Scenario:

1. Device transmits DML to Network Controller

2. DML is used for matching, other essential purposes, but no access control actions are

taken in Break Glass mode

3. Device finishes connection process, is ready for use

B.1.13 (Break Glass) Device Disconnect

Related System Goals: G3, G5

Primary Actor: Clinician

Precondition:

• MDCF is running

97

• MDCF is in Break Glass mode

• Device is connected to the MDCF

• Device may be bound to one or more apps

Postcondition:

• MDCF is running

• MDCF is in Break Glass mode

• Device is not connected to the MDCF

• Device is no longer bound to any apps

Main Success Scenario:

1. User issues command to disconnect Device within Supervisor Console

2. Supervisor console requests to perform disconnection operation

3. RBAC Engine forwards disconnection command to Device Manager

4. Device Manager disconnects Device

B.1.14 (Break Glass) App Launch

Related System Goals: G5, G6

Primary Actor: Clinician

Precondition:

• MDCF is running

• MDCF is in Break Glass mode

• Device is connected

98

• Device is compatible with App

• App is not running and is not bound to Device

Postcondition:

• MDCF is running

• MDCF is in Break Glass mode

• Device is connected

• Device is compatible with App

• App is running and bound to Device

Main Success Scenario:

1. Clinician issues command in Supervisor to launch App and bind it to Device

2. App binding/launching request is sent to RBAC Engine

3. RBAC Engine forwards command to other components to execute App launch process

4. App components are initialized

5. Supervisor displays App UI to Clinician

B.1.15 (Break Glass) App Close

Related System Goals: G5, G6

Primary Actor: Clinician

Precondition:

• MDCF is running

• MDCF is in Break Glass mode

99

• App is running

• Device is bound to App

Postcondition:

• MDCF is running

• MDCF is in Break Glass mode

• App is not running

• Device is not bound to App

Main Success Scenario:

1. Clinician issues command to close App within Supervisor console

2. Supervisor requests permission to close App from RBAC Engine

3. RBAC Engine forwards App terminate command to Network Controller components

4. App binding to device is removed

5. App UI is closed on Supervisor

B.1.16 (Break Glass) Issue Device Command

Related System Goals: G3, G5, G6

Primary Actor: Clinician

Precondition:

• MDCF is running

• MDCF is in Break Glass mode

• Device is connected

100

• App is running and bound to Device

• The command has not been executed

Postcondition:

• MDCF is running

• MDCF is in Break Glass mode

• Device is connected

• App is running and bound to Device

• Command has been executed

Main Success Scenario:

1. Clinician indicates that a command should be issued to Device within App

2. App requests permission to issue command to Device

3. RBAC Engine forwards command to Device

4. Device executes command

B.1.17 Create Role

Related System Goals: G8

Primary Actor: Administrator

Precondition:

• MDCF is running

• Role is not in access control policy

Postcondition:

101

• MDCF is running

• Role is in access control policy

Main Success Scenario:

1. Administrator edits MDCF security policy to add a new role

2. Administrator saves changes, and issues command in Administrative Console to reload

policy

3. Administrative console sends request to reload policy to RBAC Engine

4. RBAC engine approves request, and forwards command to relevant parts of Network

Controller

5. MDCF NC loads new policy containing the additional role

B.1.18 Delete Role

Related System Goals: G8

Primary Actor: Administrator

Precondition:

• MDCF is running

• Role is in access control policy

Postcondition:

• MDCF is running

• Role is not in access control policy

Main Success Scenario:

102

1. Administrator edits MDCF security policy to remove a role

2. Administrator saves changes, and issues command in Administrative Console to reload

policy

3. Administrative console sends request to reload policy to RBAC Engine

4. RBAC engine approves request, and forwards command to relevant parts of Network

Controller

5. MDCF NC loads new policy which does not have the role

6. Role is removed from all Users

B.1.19 Add Role To User

Related System Goals: G8

Primary Actor: Administrator

Precondition:

• MDCF is running

• Administrator is logged in

• Role is an existing role in the MDCF

• User is an existing user in the MDCF

• User is not associated with Role

Postcondition:

• MDCF is running

• Administrator is logged in

103

• Role is an existing role in the MDCF

• User is an existing user in the MDCF

• User is associated with Role

Main Success Scenario:

1. Administrator opens Administrative Console

2. Administrator edits configuration for user in Administrative Console

3. Administrator adds Role to User in Administrative Console

4. Administrator confirms changes

5. Administrative Console broadcasts change to update cache on Supervisor (if applica-

ble)

B.1.20 Remove Role From User

Related System Goals: G8

Primary Actor: Administrator

Precondition:

• MDCF is running

• Administrator is logged in

• Role is an existing role in the MDCF

• User is an existing user in the MDCF

• User is associated with Role

Postcondition:

104

• MDCF is running

• Administrator is logged in

• Role is an existing role in the MDCF

• User is an existing user in the MDCF

• User is not associated with Role

Main Success Scenario:

1. Administrator opens Administrative Console

2. Administrator removes Role from User in Administrative Console

3. Administrator confirms changes

4. Administrative Console broadcasts change to update cache on Supervisor (if applica-

ble)

B.1.21 Add Permission to Role

Related System Goals: G8

Primary Actor: Administrator

Precondition:

• MDCF is running

• Administrator is logged in

• Role is an existing role in the MDCF

• User is an existing user in the MDCF

• User is associated with Role

105

Postcondition:

• MDCF is running

• Administrator is logged in

• Role is an existing role in the MDCF

• User is an existing user in the MDCF

• User is not associated with Role

Main Success Scenario:

1. Administrator opens Administrative Console

2. Administrator removes Role from User in Administrative Console

3. Administrator confirms changes

4. Administrative Console broadcasts change to update cache on Supervisor (if applica-

ble)

B.1.22 Remove Permission from Role

Related System Goals: G8

Primary Actor: Administrator

Precondition:

• MDCF is running

• Administrator is logged in

• Role is an existing role in the MDCF

• User is an existing user in the MDCF

106

• User is associated with Role

Postcondition:

• MDCF is running

• Administrator is logged in

• Role is an existing role in the MDCF

• User is an existing user in the MDCF

• User is not associated with Role

Main Success Scenario:

1. Administrator opens Administrative Console

2. Administrator removes Role from User in Administrative Console

3. Administrator confirms changes

4. Administrative Console broadcasts change to update cache on Supervisor (if applica-

ble)

B.2 Exception Cases

B.2.1 User Log In (Failure)

Related System Goals: G1, G2, G3, G4

Primary Actor: Clinician

Precondition:

• MDCF is running

• Clinician is not logged in

107

Postcondition:

• MDCF is running

• Clinician is not logged in

Main Success Scenario:

1. Clinician enters credentials into Supervisor

2. Credentials transmitted to Network Controller

3. User Authentication module can not verify credentials

4. Supervisor informs Clinician of failed log in attempt

B.2.2 App Launch (Failure)

Related System Goals: G1, G2, G3, G4, G7

Primary Actor: Clinician

Precondition:

• MDCF is running

• Clinician is logged in

• Device is connected

• Device is compatible with App

• App is not running and is not bound to Device

Postcondition:

• MDCF is running

• Clinician is logged in

108

• Device is connected

• Device is compatible with App

• App is running and bound to Device

Main Success Scenario:

1. Clinician issues command in Supervisor to launch App and bind it to Device

2. App binding/launching request is sent to RBAC Engine

3. RBAC Engine verifies that Clinician has a Role that has the permission needed to

launch App

4. RBAC Engine forwards command to other components to execute App launch process

5. App components are initialized

6. Supervisor displays App UI to Clinician

B.2.3 App Close (Failure)

Related System Goals: G1, G2, G3, G4, G7

Primary Actor: Clinician

Precondition:

• MDCF is running

• Clinician is logged in

• App is running

• Device is bound to App

Postcondition:

109

• MDCF is running

• Clinician is logged in

• App is running

• Device is bound to App

Main Success Scenario:

1. Clinician issues command to close App within Supervisor console

2. Supervisor requests permission to close App from RBAC Engine

3. RBAC Engine rejects request to terminate app (user doesn’t have permission)

4. Supervisor informs user that they do not have permission to close the app

B.2.4 Device Disconnects (Failure)

Related System Goals: G6, G7

Primary Actor: Clinician

Precondition:

• MDCF is running

• Device is connected to the MDCF

Postcondition:

• MDCF is running

• Device is connected to the MDCF

Main Success Scenario:

1. User issues command to disconnect Device within Supervisor Console

110

2. Supervisor console requests to perform disconnection Operation

3. RBAC Engine denies request to disconnect Device due to missing permission

4. Supervisor notifies user that they do not have permission to disconnect Device

B.2.5 Issue Command To Device (Failure)

Related System Goals: G2, G4, G6

Primary Actor: Clinician

Precondition:

• MDCF is running

• Device is connected

• App is running and bound to Device

• The command has not been executed

Postcondition:

• MDCF is running

• Device is connected

• App is running and bound to Device

• Command has not been executed

Main Success Scenario:

1. Clinician indicates that a command should be issued to Device within App

2. App requests permission to issue command to Device

3. RBAC Engine denies request due to insufficient permission

4. Supervisor console notifies Clinician of insufficient permission to issue command

111

B.2.6 Exit Break Glass Mode (Failure)

Related System Goals: G5, G8

Primary Actor: Administrator

Precondition:

• MDCF is running

• MDCF is in Break Glass mode

Postcondition:

• MDCF is running

• MDCF is in Break Glass mode

Main Success Scenario:

1. User issues command to exit Break Glass mode from Supervisor console

2. Supervisor console sends request to exit Break Glass mode to RBAC Engine

3. RBAC Engine denies request to exit Break Glass mode

4. RBAC Engine sends notification of denial to Supervisor console

5. Supervisor Console visually notifies User that they can not exit break glass mode

B.3 External Entities

The MDCF external entity is defined to specify environmental assumptions that span more

than one external entity.

112

B.3.1 MDCF

• Channel Confidentiality, Integrity, Authenticity: Channels between the Super-

visor and Network Controller, Apps and Network Controller, and Devices and Network

Controller are assumed to have mechanisms in place providing confidentiality, integrity,

and authenticity of the data transmitted.

Rationale: This is necessary to prevent eavesdropping, also in combination with mes-

sage integrity/authenticity mechanisms, this prevents circumvention of access control

mechanisms from forged messages and replay attacks.

B.3.2 DML Metadata

• DML Access Control Annotations: These requirements assume the existence

of Access Control information being embedded in the DML metadata for all devices.

This information includes all possible permissions for a device, with default permission

assignments to universally pre-defined roles.

Rationale: We need a standard way of storing and transmitting access control infor-

mation for devices. Each device has DML metadata, making it an ideal location for

access control information.

• DML Access Control Annotation Parsing: We assume that there is a compo-

nent in the MDCF which parses access control data from DML and converts it into a

format usable by the RBAC Engine.

Rationale: In order to use the DML Access Control Annotations for devices, we need

to be able to read and use that data, thus we need a parser.

B.3.3 User management system

• User Database: We assume there is a Database of users in the system, accessible by

the RBAC Engine.

113

Rationale: We need a data structure that stores users, so that we can then do role

assignment to those users.

• User Authentication: We assume that mechanisms are in place for authenticating

users.

Rationale: This is a standard feature of any multi-user system. Access control

depends on a reliable user authentication system. Without it, there is no guarantee

that the person associated with a user account is the intended person.

• User Sessions: We assume that the User Management system keeps track of which

user(s) are logged in at any given moment.

Rationale: We want to be sure of which user is using the MDCF, so that we can

make correct access control decisions based on the roles and permissions associated

with that user.

B.3.4 Supervisor App

• Supervisor App DML: We assume that there exists DML or some equivalent form

of metadata for Apps, this can contain access control information for specific apps.

Rationale: Access control for apps themselves will require the device metadata to

specify its permissions.

B.3.5 Supervisor Console/Operator Interface

• Supervisor Console Locking: We assume that there is some mechanism that pre-

vents individuals other than the clinician currently logged into to the MDCF from

using the clinician’s user account when that clinician is not actively using the MDCF

Supervisor console.

Rationale: We want to be sure that an unauthorized person can’t easily control apps

and devices using the clinician’s already logged in account. (e.g. The clinician logs

114

in, then steps out of the room briefly causing the Supervisor console to automatically

lock until that clinician returns or someone else logs in)

• System Status Indication: We assume that the Supervisor console has some means

of displaying feedback from the RBAC Engine to a user.

Rationale: We need to be able to inform users when an operation is prevented by

the RBAC Engine, and when the system in in Break Glass Mode.

• Break Glass Controls: We assume that there is a way, through the Supervisor

console to enter and exit Break Glass mode.

Rationale: Clinicians will primarily interact with the MDCF through the Supervisor

console, making it the convenient and logical location for the Break Glass controls.

• Administrative Console: We assume the existence of an Administrative Console,

either as a part of the Supervisor Console, or as a separate entity. The Administrative

console allows a system administrator to change MDCF configuration and security

policy settings.

Rationale: An Administrative console will allow administrators to define security

policy without complicating the rest of the Clinician-facing Supervisor console.

B.4 Requirements

B.4.1 RBAC System Function

The RBAC Engine performs two functions. The first is to facilitate access control; grant

or deny the ability to carry out critical operations in the MDCF. The second is to acti-

vate/deactivate the Break Glass mode of the MDCF.

The high-level requirements of the Access Control System Function are as follows:

1. Requirement Title: The RBAC system shall store and maintain roles

115

Rationale: Role based access control relies on roles, thus the system needs a means

of storing roles.

2. Requirement Title: The RBAC system shall store and maintain permissions

Rationale: In RBAC, nothing can be done without a permission, thus the system

needs to track permissions.

3. Requirement Title: The RBAC system shall store and maintain user assignments

Rationale: Users need to be assigned to roles in order to use the permissions for that

role, user assignments are associations between users and roles.

4. Requirement Title: The RBAC system shall store and maintain permission assign-

ments

Rationale: Roles need to have permissions assigned to them, this is a permission

assignment.

5. Requirement Title: The RBAC system shall include default roles

Rationale: A deployed system may eventually have custom roles, however in order

for the MDCF to work in a plug-and-play system, there needs to be a default set of

roles that are universally present in any MDCF system or device.

6. Requirement Title: The RBAC system shall allow an Administrator to create cus-

tom roles

Rationale: Clinical environments where the MDCF might be deployed will all have

different organizational structures and operating procedures. Administrators need to

be able to create custom roles to match the needs of their organization.

7. Requirement Title: The RBAC system shall prevent a command from being sent

to a device unless the sender has a role with permission to send the command

Rationale: Control of a device needs to be restricted to protect patient safety and

enforce whatever access control policies a care facility has set.

116

8. Requirement Title: The RBAC system shall prevent a user from launching an App

unless the user has a role with permission to launch the App

Rationale: Launching an app allows it to have some amount of access to a device’s

data, and potentially control over that device. Thus, restricting the launching of apps

may be necessary depending on a care facility’s needs.

9. Requirement Title: The RBAC system shall prevent a User from gaining access to

an App unless the user has a role with permission to access the App

Rationale: Apps can provide access to sensitive patient data, or may allow control

of a device, thus restricting access to running apps may be necessary.

10. Requirement Title: The RBAC system shall prevent a user from closing an App

unless the user has a role with permission to close the App

Rationale: Apps may potentially be responsible for ongoing or repetitive tasks that

are medically relevant, thus closing an app can be a critical operation that should be

restricted.

11. Requirement Title: The RBAC system shall prevent a user from disconnecting a

Device unless the user has a role with permission to disconnect the device

Rationale: Devices may be associated to apps and executing some sort of medically

relevant task. Furthermore, this may prevent someone who is not physically present

from disconnecting devices.

12. Requirement Title: The RBAC system shall provide a means for managing roles,

permissions, role assignments, and permission assignments

Rationale: In order for RBAC to be effective, it needs to be configurable so that

any care facility or institution using the MDCF can define access control policies to

fit their individual needs.

13. Requirement Title: The RBAC system shall automatically gather Access Control

data from DML for devices and apps

117

Rationale: Devices and apps are likely to have unique permissions which need to

be recognized and stored by the RBAC engine. These permissions as well as default

permission assignments to the default roles should be stored in the DML for a device

or app.

B.4.2 Break Glass System Function

The Break Glass Function bypasses the Access Control function, allowing clinicians to

quickly provide care in an emergency situation that deviates from what is typical in the

environment the MDCF is deployed in. Excessive use of the Break Glass feature may an

indication that the security policies normally in place are overly restrictive.

The high-level requirements of the Break Glass System Function are as follows:

1. Requirement Title: The Break Glass system shall allow users to activate Break

Glass mode

Rationale: Break Glass mode can not be used if it cannot be activated.

2. Requirement Title: The Break Glass system shall allow users to launch any app

with a compatible device while in Break Glass mode

Rationale: In order to deal with an emergency/exceptional event, clinicians should

be able to launch apps as needed to deliver care to the patient, regardless of their

normal roles.

3. Requirement Title: The Break Glass system shall allow users to view and access

all features of running apps while in Break Glass mode

Rationale: In order to deal with an emergency/exceptional event, clinicians should

be able to view and control apps as needed to deliver care to the patient, regardless

of their normal roles.

4. Requirement Title: The Break Glass system shall allow full, unrestricted control of

devices while in Break Glass mode

118

Rationale: In order to deal with an emergency/exceptional event, clinicians should

be able to control devices as needed to deliver care to the patient, regardless of their

normal roles.

5. Requirement Title: The Break Glass system shall broadcast a notification when

Break Glass mode is entered or exited

Rationale: The Break Glass system part of the RBAC Engine needs to notify other

components of the MDCF that a Break Glass scenario is occurring so that the other

components may execute whatever special break glass functions they are responsible

for.

119

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	Introduction
	Background
	ICE
	MDCF
	Supervisor Components:
	Network Controller Components:
	Channel Abstraction
	Connection State Machine

	Related Work

	Certificate Framework
	Motivation
	Trust Evidence
	Public Key Infrastructure

	Requirements
	Design
	Root Certificate
	Manufacturer Certificate
	Device Model Certificate
	Device Instance Certificate
	Trust Chain Creation
	Authentication of Trust Chain

	Certificate Authoring Tool

	Authentication
	Motivation
	Requirements
	Authentication Hooks
	Authentication Providers
	Robustness and Resource Allocation

	Security Design
	Device Authentication Hooks
	Authentication Providers

	Evaluation

	Communication Security
	Motivation
	Requirements
	Design
	Hooks
	Providers

	Provider Implementation
	NULL Provider
	TLS Provider

	Access Control
	Introduction
	Background

	Requirements
	System Overview
	System Context
	System Goals
	Operational Concepts
	External Entities
	Requirements for the MDCF Access Control System
	Requirements for Break Glass System

	Design
	Level 1: Minimal Implementation
	Level 2: Customized Local Security Policy
	Level 3: Multiple Users
	Level 4: More Granularity

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Authentication Framework Performance Data
	Role Based Access Control System Use Cases
	Use Cases
	Normal Operation
	Break Glass Mode Operation
	User Log In
	User Log Out
	Device Connects (first time)
	Device Disconnects
	App Launch
	App Close
	Issue Command to Device
	Enter Break Glass Mode
	Exit Break Glass Mode
	(Break Glass) Device Connect (Unknown Device)
	(Break Glass) Device Disconnect
	(Break Glass) App Launch
	(Break Glass) App Close
	(Break Glass) Issue Device Command
	Create Role
	Delete Role
	Add Role To User
	Remove Role From User
	Add Permission to Role
	Remove Permission from Role

	Exception Cases
	User Log In (Failure)
	App Launch (Failure)
	App Close (Failure)
	Device Disconnects (Failure)
	Issue Command To Device (Failure)
	Exit Break Glass Mode (Failure)

	External Entities
	MDCF
	DML Metadata
	User management system
	Supervisor App
	Supervisor Console/Operator Interface

	Requirements
	RBAC System Function
	Break Glass System Function

