

REAL ESTATE WEB APPLICATION

by

RASHI CHOPRA

B.E., Medicaps Institute of Technology and Management, India, 2006

A REPORT

submitted in partial fulfillment of the requirements for the degree

 MASTER OF SCIENCE

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2008

Approved by:

Major Professor

Dr. Daniel Andresen

Abstract

The Real Estate Web Application is an interactive, effective and revenue-generating

website designed for the Real Estate Industry. The main objective of this application is to help

the Real Estate Company to display unlimited number of property listings on the website.

The primary focus is to get familiar to .NET framework and code with ASP.NET and C#

.NET to provide a featured GUI which contains sophisticated search engine for buyer’s to search

for property listings specific to their needs. The search engine not only provides an easy and

convenient way to search for listings but also display the entire list of properties in a customized

grid format. The buyer can then view the complete specification of each property listing with its

features, description and photographs. The application also provides a drag and drop control to

save a list of selected property listings while browsing other options on the Real Estate Website.

There are hundreds of Real Estate Websites on the World Wide Web but the intention of

designing this application is to develop something new, innovative and efficient using latest

technologies like AJAX, Java Script, etc which not only enhances the already existing search

features available on the internet but also gets rid of their annoying and unessential features. The

main emphasis lies in providing a user-friendly search engine for effectively showing the desired

results on the GUI.

 iii

Table of Contents

List of Figures .. vi

List of Tables ... vii

Dedication .. ix

CHAPTER 1 - Introduction... 1

1.1 Motivation ... 1

1.2 Project Overview ... 1

1.2.1 Project Introduction .. 1

1.2.2 Problems with existing systems ... 2

1.2.3 Objective .. 3

1.2.4 Architecture .. 4

1.3 Requirement Specification .. 4

1.3.1 Scope .. 4

1.3.2 Goal .. 4

1.3.3 Assumptions ... 4

1.3.4 Environment ... 4

CHAPTER 2 - Developer Platform ... 5

2.1 Microsoft .NET Framework .. 5

CHAPTER 3 - Technologies ... 8

3.1 Tools and Technologies .. 8

3.1.1 ASP.NET 2.0 .. 8

3.1.2 Microsoft Visual Studio 2005 .. 9

3.1.3 Microsoft SQL Server 2005 ... 9

3.1.4 ADO.NET .. 10

3.1.5 AJAX / ASP.NET 2.0 support for AJAX ... 10

CHAPTER 4 - System Architecture ... 12

4.1 System Architecture .. 12

4.2 Architecture of Real Estate Web Application ... 14

4.2.1 Presentation Tier .. 14

 iv

4.2.2 Middle Tier ... 16

4.2.2.1 Use Case Diagram ... 16

4.2.2.2 Class Diagram ... 17

4.2.3 Database Tier .. 21

4.2.3.1 ER Diagram ... 21

4.2.3.2 Database Schema ... 22

CHAPTER 5 - Testing .. 24

5.1 Unit Testing ... 24

5.2 Performance Testing ... 26

5.2 Testing Samples .. 28

5.2.1 Search Web Page .. 28

5.2.1.1 Test Case 1 .. 28

5.2.1.2 Test Case 2 .. 29

5.2.1.3 Test Case 3 .. 30

5.2.2 Details Web Page ... 32

5.2.2.1 Test Case 1 .. 32

5.2.2.2 Test Case 2 .. 33

5.2.2.3 Test Case 3 .. 34

5.4 Test Analysis ... 35

5.3 Screen Shots of Tested Web Pages ... 38

5.3.1 About Us Webpage .. 38

5.3.2 Search Webpage ... 39

5.3.3 Details Webpage .. 40

CHAPTER 6 - Project Metrics and Experience .. 41

6.1 Project Metrics .. 41

6.2 Overall Experience .. 42

CHAPTER 7 - Conclusion and Future Work .. 44

7.1 Conclusion... 44

7.2 Future Extensions to the Project ... 44

7.2.1. Using Object-Oriented Domain Model ... 45

7.2.1.1 Providing Web Services .. 45

 v

7.2.1.2 Functionality Extensions ... 46

References ... 47

 vi

List of Figures

Figure 2.1 Microsoft .NET Architecture .. 5

Figure 4.1 3-Tier Architecture .. 13

Figure 4.2 ASP.NET AJAX Framework………………………………………………………...........14

Figure 4.3 Page Flow Diagram………………………………………………………………...………15

Figure 4.4 Use Case Diagram…………………………………………………………………………..16

Figure 4.5 Class Diagram………………………………………………………………………………….17

Figure 4.6 Property Listing Class….......………………………………………………………………….18

Figure 4.7 Listing Photo Class.......………………………………………………………………………..19

Figure 4.8 Listing Feature Class…………………………………………………………………………..19

Figure 4.9 Listing Type Class……………………………………………………………………………..20

Figure 4.10 Zipcode Class………………………………………………………………………………...20

Figure 4.11 E-R Diagram………………………………………………………………………………….22

Figure 4.12 Database Schema……………………………………………………………………………..23

Figure 5.1 Screentshot of NUnit testcase execution………………………………………………………26

Figure 5.2 Search Page Test Case 1.1- Graph Results……………………………….……………………28

Figure 5.3 Search Page Test Case 1.2- Graph Results .…………………………………………………...29

Figure 5.4 Search Page Test Case 2- Graph Results .…………………………………………………......29

Figure 5.5 Search Page Test Case 3.1- Graph Results ……………………………………………………30

Figure 5.6 Search Page Test Case 3.2- Graph Results ……………………………………………………31

Figure 5.7 Details Page Test Case 1 - Graph Results……………………………………………………..33

Figure 5.8 Details Page Test Case 2 - Graph Results……………………………………………………..34

Figure 5.9 Details Page Test Case 2 - Graph Results……………………………………………………..35

Figure 5.10 Details Page Test Case 2 - Graph Results……………………………………………………38

Figure 5.11 Screenshot of About Us Webpage……………………………………………………………39

Figure 5.12 Screenshot of Search Webpage………………………………………………………………39

Figure 5.13 Screenshot of Search Webpage with Drag and Drop Tool…………………………………..40

 vii

List of Tables

Table 4.1 List of Pages being planned for the Page Flow Diagram………………………….....15

Table 5.1 System Configuration………………………………………………………………...24

Table 5.2 Test Cases Summary………………………………………………………………….27

Table 5.3 Search Page Test Case 1………………………………………………………….......28

Table 5.4 Search Page Test Case 2……………………………………………………………...29

Table 5.5 Search Page Test Case 3……………………………………………………………...30

Table 5.6 Details Page Test Case 1……………………………………………………………...32

Table 5.7 Details Page Test Case 2……………………………………………………………...33

Table 5.8 Details Page Test Case 3……………………………………………………………...34

Table 5.9 Average Response Time Summary…………………………………………………...37

Table 5.10 System Configuration Testing for Performance Upgrade…………………………......37

Table 6.1 Project Lines of Code………………………………………………………………....35

Table 6.2 Project Planning Phase………………………………………………………………..35

 viii

Acknowledgement

I would like to thank my Major Professor Dr. Daniel Andresen for his constant help,

encouragement and guidance throughout the project. I specially acknowledge his patience to help

me figure out the right project to work on, providing me flexibility to implement my new ideas

and provide valuable inputs for the project.

I would also like to thank Dr. Gurdip Singh and Dr. Mitchell L. Neilsen for their support

and for graciously accepting to serve on my committee.

 ix

Dedication

I would like to dedicate this project to my parents Mr. Rajesh Chopra and Mrs. Deepti

Chopra for their words of encouragement and helping me to get through the difficult times.

 1

CHAPTER 1 - Introduction

1.1 Motivation

The motivation to develop Real Estate Web Application comes from my urge to learn

Visual Studio .NET 2005 for building the business logic of the application, SQL server 2005 for

database designing and using new web technologies like AJAX, Java Script for website

designing. The most influential factor for selecting this application is to add some innovative

features to the search engine of a Real Estate Website which can make the task of a property

buyer easy to search for property listings.

This application provides a wide scope to include number of web controls to develop the

search engine and allow them to implement using AJAX functionality. Performance of the search

engine is the main factor which allows the buyers to search for listings with different

combination features. Growing buyer needs should be taken in to concern with the new features

to be included. Another challenge in this application is the effective storage / retrieval of

property images from the SQL database.

Thus, the development of powerful search engine, displaying detailed summary of

listings on the customized grid and drag - drop tool to select the properties are the main

motivations for the project.

1.2 Project Overview

1.2.1 Project Introduction

There are large numbers of commercial real estate online information service providers

offering a suite of commercial properties and services tailored to the national and local needs of

the commercial investments industry. These online marketplaces have thousands of commercial

real estate properties for sale and lease under various categories including commercial office

space, industrial, single - family, multi - family, land, etc both for sale and lease as well. There

purpose it to attract community of industry professionals including investors, property managers,

landlords, appraisers, local and national buyers to select the properties with desired features.

 2

In this increasingly demanding scenario for a platform which could help buyers to have a

look at the available property listings with all its photographs, necessary specification and

description, this application is an effort to provide such a web interface with some attractive and

innovative features using the latest technologies. Real Estate Web Application is an AJAX

enabled website with the latest AJAX controls giving attractive and interactive look to the web

pages.

The most significant feature in these websites is the interactive search criterion which lets

the buyer specify their requirements to get the correct set of records from the database. The

search tool should be strong enough to include all the required features which a buyer may

desire. Also, each search requires a post back call to the database to retrieve some set of records

but making the website AJAX enabled prevents the annoying post backs. Thus, each call

refreshes just the data grid to display the listings rather the whole web page. Some other new

features like drag and drop tool to save the listings, retrieving related results for each search, etc

make this application more feature rich.

1.2.2 Problems with existing systems

The purpose of creating this Real Estate Web Application is to outcast the discrepancies

in hundreds of such existing systems on the World Wide Web. One of the basic problems with

the existing systems is the non-interactive environment they provide to the users. Most of the

applications involved in Real Estate business use some web template to put the content specific

to their company and make it communicate with the database to search the listings. These

templates simply use basic web controls to do this task making the web page non-interactive. On

the other hand, the motive of this Real Estate Web Application is to allow the user to play with

the search tool and create different combinatorial search criterion to perform exhaustive search.

Another problem in such applications designed so far is the use of traditional user

interfaces which make continuous post backs to the server; each post back makes a call to the

server, gets the response and then refreshes the entire web form to display the result. This

scenario adds an extra trade off causing a delay in displaying the results. Making such

applications AJAX enabled gets rid of these unnecessary delays letting the user to perform

exhaustive search. The users of this application can easily feel the difference between the Ajax-

empowered user interfaces vs. traditional user interfaces.

 3

Scrutinizing the features of the existing systems reveals another problem, when the user

tries to save some property listings; the user is forced to login as a buyer/user of this website.

Once the user logs-in, he can then view this saved list. In contrast, this application uses the

session state to maintain the list of saved property listings rather than making the user register

first. As soon as the user performs a search, a new session is created and then lets the user select

a listing, drag and drop it to the “Saved Search” tool. This tool then keeps track of this list until

the session expires.

1.2.3 Objective

The foremost objective of this project was to give a different visualization styles to the

Real Estate Website which has more features, attractive animations and all together a new look

in contrast to the already existing websites. Usually in a real estate website, the property search

page consist of traditional search style i.e. a set of textboxes / drop-downs to select a particular

county or MLS# for the property to search along with other web controls to specify the number

of beds / baths or any additional features they are looking in the property. In contrast, this

website provides altogether a new visualization of the search page i.e. AJAX enabled controls

with no post backs and additional functionalities like sliding bars to select the number of beds,

baths, footage and price, drag and drop functionalities, animation enabled collapsible styles, etc.

The next objective of importance was to build an AJAX enabled real estate website

which not only reduces the annoying post backs and loss of control focus, but also gives a faster

and more interactive user interface. Moreover to make the website more features rich, features

like customized grid, drag and drop tool, accordion panels and sliding bars were added to the

website.

The third objective was to include a new feature of saving the selected property listing

during a session in a drag – drop tool which similar websites don’t have. Usually a real estate

website forces a user to login as a buyer to save the selected listings so that when the user logs in

the next time, those saved listings are accessible. But this site simply provides a toolbox to drag a

selected number of listings and save them during the entire session.

 4

1.2.4 Architecture

The Real Estate Web Application is built using a layered architecture where the total

functionality can be divided into layers having different functionalities. The main layers include

the database access layer, business logic layer and the presentation layer. Thus, this application

follows the 3-Tier Architecture. The System Architecture is explained in detail in the further

sections of this document.

1.3 Requirement Specification

1.3.1 Scope

The scope of MS project “Real Estate Web Application” is to enable the buyers to search

for property listings online. The motive of developing this application is to design a feature rich

search engine which can make the search of commercial land/properties an easy task.

1.3.2 Goal

Goal is to gain a good knowledge of the complete life cycle of the project development

starting from the Requirement Gathering Phase to the Testing Phase. The implementation of this

application also gives a hands-on experience in ASP.NET, C# .NET programming and also

design efficient databases in SQL Server.

1.3.3 Assumptions

• User will have Internet Connection while using Real Estate Web Application.

• User will have Internet Explorer 5.0 or high IE version while using Real Estate

Web Application.

• User will upload valid images for the Real Estate Web Application.

1.3.4 Environment

• The Real Estate Web Application will be written in C# .NET language.

• The development environment will be Microsoft Visual Studio .NET.

• The Real Estate Web Application will be tested on Windows XP platform.

 5

CHAPTER 2 - Developer Platform

The Real Estate Web Application is developed on the .NET Platform using the .NET

framework together with Microsoft SQL Server 2005. It is developed in the Visual Studio .NET

2005 integrated development environment. The goal of this chapter is to give an overview of the

.NET Framework to show how this platform is architectured.

2.1 Microsoft .NET Framework

Microsoft .NET Framework is a software technology that is available with several

Microsoft Windows Operating Systems. This computing platform simplifies application

development in the highly distributed environment of the Internet. This framework not only

provides an environment for building windows applications but also building, deploying and

running web-applications and web-services. It includes a huge library of pre-coded solutions to

common programming problems, a runtime or virtual machine that manages the execution of

programs written specifically for the framework, and a set of tools for configuring and building

applications. The .NET architecture is shown in Figure 2.1.

Figure 2.1 Microsoft .NET Architecture [7]

 6

The core aspects of the .NET Framework lie within the Common Language

Infrastructure, or CLI. CLI enables applications written in multiple .NET languages to operate in

various environments without requiring program modifications. Its powerful features include

application development and execution including exception handling, garbage collection,

security and interoperability. Microsoft's implementation of the CLI is called the Common

Language Runtime or CLR.CLR comprises of four major components: Common Type System

(CTS), metadata system, base class library (FCL), file format (PE), intermediate language (CIL),

and access to the underlying Windows operating system via the Win32 API. An overview of the

CLR is shown in Figure 2.2.

Figure 2.2 Overview of Common Language Infrastructure (CLI) [8]

.NET Common Type System [CTS] provides basic value types, type composition, type

safety, objects, interfaces, and delegates. The Common Language Specification [CLS] is the

subset of the Common Type System that all first class .Net languages need to share. The

Common Language Runtime [CLR] is the managed code environment that everything else is

 7

built on. .Net is a garbage-collected environment but never interpreted - while .Net uses byte

codes like Java, the Common Intermediate Language [CIL] code is always compiled, usually

Just In Time [JIT] to be executed.

.NET metadata, in CLR, refers to certain data structures embedded within the Common

Intermediate Language [CIL] code that describes the high-level structure of the code. It describes

all classes and class members that are defined in the assembly, and the classes and class

members that the current assembly will call from another assembly. The metadata for a method

contains the complete description of the method, including the class, the return type and all of the

method parameters.

.NET Virtual Execution System [VES] provides an environment for executing managed

code. Its purpose is to provide the support required to execute the CIL instruction set. It also

provides direct support for a set of built-in data types, defines a hypothetical machine with an

associated machine model and state, a set of control flow constructs, and an exception handling

model.

In .NET the intermediate language is complied Just In Time [JIT] into native code when

the application or component is run instead of compiling the application at development time. It

is a technique for improving the runtime performance of a computer program. In JIT

environment, the source code is first translated to an intermediate representation, when this code

is executed the runtime environment translates it into the native machine code i.e. the code is

compiled when it is just to be executed thereby improving the runtime performance.

 8

CHAPTER 3 - Technologies

This chapter includes the details of the latest technologies and tools used to build this

application, their benefits and implementation details. The chapter also describes the interaction

of these tools with the .NET Framework.

3.1 Tools and Technologies

The latest tools and technologies involved in building this website are: ASP.NET 2.0,

Microsoft Visual Studio 2005, ADO.NET, SQL Server 2005, AJAX and Java Script.

3.1.1 ASP.NET 2.0

ASP.NET 2.0 is the next generation of Microsoft’s Active Server Page [ASP] technology

which provides a web application framework that allows programmers to dynamically build web

pages, web applications and create web services. ASP.NET supports code written in compiled

languages such as Visual Basic, C++, C# and Perl, and it features server from the content. The

basis for ASP.NET 2.0 is built on the Common Language Runtime [CLR] described above. The

dynamic content supported by ASP.NET is contained in the ASPX web forms which contain the

static XHTML markup, as well as server-side Web Controls and User Controls where the

developers place all the required static and dynamic content for the web page. ASP.NET 2.0 is

an extension of ASP.NET 1.1 making it much easier for developers to develop dynamic Web

Applications [1]. The major aspects of this technology include ASP.NET Compiler which

includes strong typing, performance optimization and early binding. The task of this compiler is

to compile all application components including pages and controls into an assembly which can

then be used to service user requests. The Page and Controls Framework runs on the web server

which then dynamically produces and render ASP.NET web pages which are completely object-

oriented. Other services of ASP.NET include Security infrastructure, State-management

facilities, Application configuration, Debugging support and XML Web Services framework.

Some of the new features of ASP.NET 2.0 are the introduction of Master Pages and

Themes which allow the developer to define a common structure and interface elements, to be

shared by many pages in the website. Standard controls for navigation, security, support for

XML standards and interoperability with AJAX make web development easier and quicker.

 9

3.1.2 Microsoft Visual Studio 2005

Microsoft Visual Studio provides an Integrated Development Environment (IDE) for

programming that enables developers to quickly create data-driven and distributed applications

using C# techniques and reusable controls. It can be used to develop both console and Graphical

User Interface applications. The GUI applications include Windows Form applications, web

applications and web services. Visual Studio comprises of a Code Editor, Debugger, Designer

and other tools making the environment very interactive and easy to use. VS 2005 was upgraded

to support all new features introduced in .NET Framework 2.0 as described above. The new

features like intelligence and code refactoring supported by code editor, support for SQL Server

2005 databases, an improved environment for web publishing and load testing to see application

performance under various sorts of user loads [2].

3.1.3 Microsoft SQL Server 2005

Microsoft SQL 2005 is a relational database management system from Microsoft. Its

primary components are SQLOS implementing basic services required fir its server, including

thread scheduling, I/O and Memory management, Relational Engine implementing relational

database components having support for databases, tables, query and stored procedures and

finally Protocol layer which exposes all these functionalities [3]. Being Transact-SQL as its

primary query language a high performance data access is provided. This SQL Server version is

Microsoft’s next generation data management and analysis software delivering increased

scalability, availability and security for enterprise data. The next major enhancement in SQL

Server 2005 which the SQL Server 2000 lacks is the integration of a .NET compliant language

such as C#, ASP.NET or VB.NET to build objects (stored procedures, triggers, functions, etc.),

which enables the application to execute .NET code in the DBMS to take advantage of the .NET

functionality. SQL Server 2005 has native capabilities to support encryption of data stored in

user-defined databases which SQL Server 2000 lacks. Real Estate Web Application utilizes these

features of Microsoft SQL Server 2005 to store the entire details of the property listings along

with its images.

 10

3.1.4 ADO.NET

.NET provides databases access through the set of tools and namespaces collectively

referred to as Microsoft ADO.NET. There are three layers: the physical data store which could

be a SQL database or an XML file, the Data Provider which interacts between the program and

the database, the DataSet which stores disconnected data on the local memory. Figure 3.1 shows

the ADO.NET model in action:

Figure 3.1 Overview of ADO.NET Model

3.1.5 AJAX / ASP.NET 2.0 support for AJAX

AJAX Asynchronous JavaScript and XML is a way of web development technique used

for creating interactive and rich web applications. It provides a mechanism for the applications to

interact with the Web Server asynchronously and retrieve the data in the background keeping the

behavior of the application intact in the foreground. AJAX combines XHTML and CSS

standards based presentation, interaction with the page using DOM model, data interchange with

XML and XSLT and JavaScript altogether to incorporate dynamic behavior to the websites.

In contrast to the AJAX applications, the classic web application model works like this:

Most user actions in the interface trigger an HTTP request back to a web server. The server does

some processing — retrieving data, crunching numbers, talking to various legacy systems — and

then returns an HTML page to the client. This approach does not make a great user experience as

it makes the user wait for a long time. But AJAX makes all the difference by eliminating the

start-stop-start-stop nature of interaction on the Web by introducing an intermediary — an Ajax

 11

engine — between the user and the server. Instead of loading a webpage, at the start of the

session, the browser loads an Ajax engine — written in JavaScript and usually tucked away in a

hidden frame. This engine is responsible for both rendering the interface the user sees and

communicating with the server on the user’s behalf. The Ajax engine allows the user’s

interaction with the application to happen asynchronously — independent of communication

with the server. Thus, the user wait time is negligible. This scenario is evident in the Figure 3.4.

Figure 3.2 Comparisons of Classic Web Application Model and AJAX Web Application

Model

 In many applications the sections of pages need to be reloaded rather than reloading the

whole application, AJAX fulfills this requirement allowing for much more responsive web

applications. Also, the use of Ajax can reduce connections to the server by its extensive use

of since scripts and style sheets which have to be requested once.

 12

CHAPTER 4 - System Architecture

This chapter provides an Architectural Design for the Real Estate Web Application which

represents a three tier architecture comprising of the Presentation Tier: list of web pages planned

to be implemented in the application, the Middle Tier: class diagrams and description of each

class and the Data Tier: comprising of the ER diagram and database schema.

4.1 System Architecture

The architecture of the system is based on the three-tier architecture. There are three

logical layers: the Presentation Tier, the Business Tier, and the Data Tier. Each layer in the

system is a reusable portion of code that performs a specific function. These layers are not only

responsible for performing these functions but also interact with other layers to perform specific

goals [4]. Like, in this application when the presentation layer needs to extract information from

the backend database, it would utilize a series of layers to retrieve the data, rather than having the

database calls embedded directly within it. The ASP.NET web site/web form is called the

presentation layer because the content within it is viewable to the users of the site.

The middle tier called the Business Tier communicates between the presentation tier and

the data tier. As mentioned above, the Presentation Layer could communicate with the data

access layer directly, it usually goes through the business layer. This layer then validates the

input conditions before calling a method from the data layer. This ensures the data input is

correct before proceeding, and can often ensure that the outputs are correct as well. Most of the

business logic of the application lies within the business layer, which makes this logic reusable

across applications. This layer helps move logic to a central layer for “maximum reusability.”

The Data Tier is the key component for this application as it is responsible for storing the

data corresponding to each property listing. This layer is a separate component whose sole

purpose is to serve up the data from the database and return it to the caller. Through this

approach, data can be logically reused, meaning that a portion of an application reusing the same

query can make a call to one data layer method, instead of embedding the query multiple times.

This is generally more maintainable. Now this data is returned using the ADO.NET technology

which is built into the .NET framework, ADO.NET contains a mechanism to query data out of

the database and return it to the caller in a connected or disconnected fashion [5]. This scenario

 13

can be explained as, when the buyer makes a request to search for a particular property listing in

a particular area (specified by the zip code/city/state/MLS#); the business layer passes this

information to the database in the form of a query. The database retrieves the data corresponding

to the query and submits the results back to the presentation tier for display. The Figure 4.1

shows the three-tier architecture of the Real Estate Web Application.

Figure 4.1 3-Tier Architecture [10]

In the above figure, the Presentation Tier comprises of ASP.NET AJAX Controls which

interact with the Logic Tier. The Presentation Layer can be elaborated to show what happens

when the user requests something and calls to the server are made behind the scenes. This

ASP.NET AJAX Framework uses the client-centric programming model. In this model, the large

quantities of business logic from the server side are moved to the client side by introducing

AJAX characteristics at the client-side controls. This asynchronous communication is shown in

the Figure 4.2:

 14

Figure 4.2 ASP.NET AJAX Frameworks

4.2 Architecture of Real Estate Web Application

The Real Estate Web Application is based on the three tier architecture namely the

presentation tier, the middle tier, and the data tier.

4.2.1 Presentation Tier

The Presentation Tier of this application consists of ASP.NET web forms which contain

ASP web controls, user controls and AJAX controls. The web pages are designed to make the

website look attractive and interactive. The objective of this layer was to take the full advantage

of the latest AJAX animated controls like Collapsible panels, sliding bars, watermark textboxes,

etc. Visual Studio .NET 2005 version is being used to design and code the ASP.NET pages.

ASP.NET 2.0 has an extra support of master pages and themes making the site pages

look uniform and have common structure throughout. The banners and footers are included in

the master page; the Tab Container loads the rest of the web pages. The content is added by the

user in the search engine using the AJAX controls which causes the data grid present in the

 15

Update Panel being refreshed. The application constitutes some of the basic pages needed by a

Real Estate Application. This layer is responsible for the results/output from the business layer

and transforms the results into a readable format for the end user. The following Page Flow

Diagram presents the navigation flow in the application:

Figure 4.3 Page Flow Diagrams

Table 4.1 represents the list of ASP.NET Pages implemented in the Real Estate Web

Application and the purpose of each page.

ASP.NET Pages Purpose

HomePage.aspx Information about the Real Estate Company.

Search.aspx Provides a search engine to the buyer, results

are displayed on the data grid.

UploadListing.aspx Uploads the photographs of the property.

Details.aspx Displays the property details.

 16

Table 4.1 List of pages being planned for the Page Flow Diagram

4.2.2 Middle Tier

The Middle Tier called as the Business Logic Layer allows the users to share and control

the business logic by isolating it from the other layers of the application. This tier increases the

code transparency and supports changes in the data layer and is also responsible for altering the

database. This tier contains classes for Property Listings, Property Photo, Property Features,

Property Type and Zip codes and accesses the databases. A better understanding of the middle

tier can be obtained with the help of the Use Case Diagram and Class Diagram.

4.2.2.1 Use Case Diagram

Figure 4.4 shows the Use Case Diagram for the Real Estate Web Application. The buyer

can search the property listings, view property details, enter the selected listings in the buyer cart

and can delete the listings from the buyer cart.

 17

Figure 4.4 Use Case Diagram

4.2.2.2 Class Diagram

Figure 4.5 shows the Class Diagram representing the relations between the different

classes.

Figure 4.5 Class Diagram

 18

The description for each of the classes in the Class Diagram is given below:

PropertyListing Class:

The PropertyListing class is the basic class for this application having attributes and

description for each property listing which help the buyer to select the property desired for his

need. This class includes the basic attributes to describe the listing like MLS#, listing_name,

listing_address, listing_description, etc. The methods included in this class are:

Adding a new property listing to the database.

Editing the existing property listing.

Uploading photographs for each property listing.

Deleting the photographs for each property listing.

Figure 4.6 PropertyListing Class

ListingPhoto Class:

The ListingPhoto class associates itself with the PropertyListing. It is used to define the

attributes of the photo that belongs to each Property Listing. The Real Estate Company can

upload any number of photos but can have only one picture that acts as its profile picture. This

 19

profile picture of the listing is viewed whenever that particular listing pops up on the data grid by

entering a particular search scenario. The rest of the pictures corresponding to the listing can be

viewed in the photo album. The methods corresponding to this class are AddPhoto and

DeletePhoto. The Class Diagram for ListingPhoto is shown below:

Figure 4.7 ListingPhoto Class

ListingFeature Class:

The ListingFeature Class corresponds to the super class PropertyListing. This class contains the

attributes which describe the extra features of the properties present in the PropertyListing Class.

The methods AddFeatures and DeleteFeatures add information corresponding to the property

present in the PropertyListing Class. Thus, all the attributes combined from the PropertyListing

and PropertyPhoto Classes completely describe the property which a buyer is looking for. The

Class Diagram for ListingFeature is shown below:

Figure 4.8 ListingFeature Class

 20

PropertyType Class

PropertyType also corresponds to the super class PropertyListing. This class contains the

attributes which describe the type of the property the buyer is looking for. The type of the

property can be single-family or multi-family. The operations on the class named AddType and

DeleteType determine the type of the property listing. Class Diagram for PropertyType is shown

below:

Figure 4.9 ListingType Class

ZipCodes Class

The ZipCode class supports the PropertyListing class. One of the attribute of the PropertyListing

class is zip code which identifies the place where the property is located. ZipCode class contains

all the US zip codes and supports the PropertyListing class by locating all the zip codes in the

vicinity of a particular zip code. Class Diagram for ZipCode is shown below:

Figure 4.10 ZipCodes Class

 21

4.2.3 Database Tier

The Real Estate Web Application is supported by the SQL Server 2005 and its database.

SQL Server provides a good response time of the data being stored making the search effective,

convenient way for storing the photographs of the properties and storing the entire description

and features of the Property Listings.

The database schema for this application consists of five tables out of which the Listing is

the main table to store the primary details of the property. Listing_type and Listing_feature

reference the MLS# in the Listing table to describe more features of the listings. Lisitng_photo

stores the photographs of the properties in the form of binary data. The MLS_ID column name is

the attribute in the Listing table which is referenced by all the other tables.

4.2.3.1 ER Diagram

The Entity-Relationship model of the database being displayed is shown below:

 22

Figure 4.11 E-R Diagram

4.2.3.2 Database Schema

Following is the database schema diagram for the Real Estate Web Application, the

associations between various database classes can be easily seen. The associations are also

consistent with the class diagram’s associations presented above. Member and Owns

relationships are changed to strong entities in implemented.

MLS_ID

City

Size

Address

Zipcode

State

Bed

Bath

Date

Description

PropertyPhoto

ZipCodes

PropertyListing

MLS_ID

PHOTO_ID

OWNS

BELONGS_TO

HAS

PropertyFeature

PropertyType

MLS_ID

 23

Figure 4.12 Database Schema

 24

CHAPTER 5 - Testing

This chapter discusses the various tests performed on the web-application with a set of

test scenarios. Both unit and load testing is performed on this application. Testing is done on a

local machine with the following system configuration.

Processor Intel Pentium®

Processor Speed 2.20GHz

Physical Memory 3.00 GB of RAM

Operating System Windows XP Professional

Table 5.1: System Configuration

5.1 Unit Testing

Unit test is performed to test and validate the individual units of source code. It is the

code wrapper around the application code that permits test tools to execute them for fail-pass

conditions. Unit testing is important as it gives the code authors and reviewers’ confidence that

patches produce the correct results. The test cases are a good impetus for developers to discover

edge cases.

The Real Estate Web Application uses NUnit Framework to perform Unit Testing. NUnit

Framework is port of JUnit framework from java and Extreme Programming (XP) and is an open

source product. This framework is developed to make use of .NET framework functionalities and

uses an Attribute based programming model. The nunit.exe program is a graphical runner that

shows the test cases in an explorer-like browser window and provides visual indication of

success or failure of the tests.

Following are the test cases executed against the web-application using NUnit:

Bed_BathTest: This test case validates the functional unit in the application that is

responsible for querying the database to retrieve the number of beds and baths from the database

corresponding to the number entered by the user in the search criterion. This functional test

 25

checks for the valid beds and baths combination that can let the user retrieve the results from the

database.

MLS_IDTest: This test case tests the functional unit that is responsible for fetching the

details of the property listing such as city, state, zipcode, beds, baths, etc and displays it to the

user in the data grid. This function ensures whether the search entered in the search criterion.

MLS_ZipCodeTest: This test case validates the functional unit in the application that is

responsible for querying the database to retrieve the property listing details from the database

based on the combinatorial search for the MLS_ID and ZipCode. This functional test checks for

the valid MLS_ID and ZipCode combination that can let the user retrieve the results from the

database. The result of this combinatorial search results in one row corresponding to the unique

MLS_ID entry in the database.

PriceFootageTest: This test case validates the functional unit in the application that is

responsible for querying the database to retrieve the property listing details where the price is

greater than the price entered by the user and the footage is greater than the square feet miles

entered by the user. This query may result in many rows satisfying the search criterion.

PriceTest: This test case tests the functional unit that is responsible for fetching the

details of the property listing such as city, state, zipcode, beds, baths, etc and displays it to the

user in the data grid where price is greater than the price entered by the user. This function

ensures whether the search entered in the search criterion is correct.

PropertyDetailsTest, PropertyInformationTest, SearchResultsTest, VerifySearchTest and

ZipCodeTest are other functional unit tests that validate the correctness of the results

corresponding to different combinatorial search criteria. The screenshot of NUnit test cases

execution is shown in the Figure 5.1.

 26

Figure 5.1 Screenshot of NUnit test case execution.

5.2 Performance Testing

Performance of a web-application can be tested done by applying the Load and Stress

Testing on it. Load testing is subjecting the application to a statistically representative load. This

testing is done in support of the application reliability testing and in performance testing. In

performance testing, the load is varied from minimum (zero) to the maximum level the

application can handle without application-specific excessive delay. In this testing the realistic

workloads are characterized, simulated and submitted to the system under test. Load Testing

verifies the acceptability of the target-of-test's performance behavior under varying operational

conditions (such as number of users/threads, number of loop counts, etc.) while the configuration

remains constant. While the Stress Testing verifies the acceptability of the target-of-test's

performance behavior when abnormal or extreme conditions are encountered, such as diminished

resources or extremely high number of users. Extreme loads are used in load stress testing - to

find the breaking point and bottlenecks of tested system. In load stress testing we have tried

breaking the application by an extreme load and expose bugs that are likely to appear under

stress, such as data corruption, buffer overflows, large number of users, etc.

 27

Load analysis needs to proceed by having a special purpose browser act like a human

user. This assures that the performance checking experiment indicates true performance - not

performance on simulated but unrealistic conditions. The testing tools try to perform Load

Simulation to re-create a realistic scenario and so the results obtained assures that they can be

used to analyze the performance characteristics of the web site under high load conditions.

The Real Estate Web Application uses the Jakarta JMeter as the Website load testing tool

as it can simulate thousands of users, came from the same quantity of IPs and analyze, how many

concurrent users can handle this web site. Apache JMeter is a 100% pure Java Desktop

application designed to load test functional behavior and measure performance of a web

application. This tool is strong enough to test perform both on static and dynamic resources such

as files, Servlets, Java Objects, Data Bases and Queries, FTP Servers and more. JMeter is used to

simulate a heavy load on a server, network or object to test its strength or to analyze overall

performance under different load types. It can be used to obtain a graphical analysis of

performance behavior under heavy concurrent load [6].

Using the JMeter, I have performed several tests taking different readings and found out

the peak number of users that can run effectively with this tool. The hardware capabilities of my

machine limit the number of users to 1000. The testing results are shown in a tabular form

containing the testing figures for various web pages. The testing is done keeping the loop count

constant i.e. 16000 and Ramp-up period as 5 seconds and varying the number of users.

Users Ramp-Up Period (sec) Loop Count

100 5 16000

500 5 16000

1000 5 16000

Table 5.2: Test Cases Summary

Testing is performed on the following pages:

• HTML Page (Home Page)

• Database Intensive Page (Search Page)

• Business Logic Page (Details Page)

 28

5.2 Testing Samples

5.2.1 Search Web Page

5.2.1.1 Test Case 1

Users Loop

Count

Ramp-up

period (sec)

Average

Response

Time (ms)

Throughput

100 16000 5 6174 967.84/min

Table 5.3: Search Page Test Case 1

Figure 5.2 Search Page Test Case 1.1 - Graph Results

 29

 Figure 5.3 Search Page Test Case 1.2 - Graph Results

5.2.1.2 Test Case 2

Users Loop

Count

Ramp-up

period (sec)

Average

Response

Time (ms)

Throughput

500 16000 5 55915 967.84/min

Table 5.4: Test Case 2

 30

Figure 5.4 Search Page Test Case 2 - Graph Results

5.2.1.3 Test Case 3

Users Loop

Count

Ramp-up

period (sec)

Average

Response

Time (ms)

Throughput

1000 16000 5 33243 364.157/min

Table 5.5: Search Page Test Case 3

 31

Figure 5.5 Search Page Test Case 3.1 - Graph Results

 32

Figure 5.6 Search Page Test Case 3.2 - Graph Results

5.2.2 Details Web Page

5.2.2.1 Test Case 1

Users LoopCount Ramp-up period (sec) Average Response

Time (ms)

100 16000 5 4657

Table 5.6: Details Page Test Case 1

 33

Figure 5.7 Details Page Test Case 1 - Graph Results

5.2.2.2 Test Case 2

Users LoopCount Ramp-up period (sec) Average Response

Time (ms)

500 16000 5 34664

Table 5.7: Details Page Test Case 2

 34

Figure 5.8 Details Page Test Case 2 - Graph Results

5.2.2.3 Test Case 3

Users LoopCount Ramp-up period (sec) Average Response

Time (ms)

1000 16000 5 70063

Table 5.8: Details Page Test Case 3

 35

Figure 5.9 Details Page Test Case 3 - Graph Results

5.4 Test Analysis

The main purpose of performing JMeter Testing is analyzing the response time

requirements of the web applications. In context of web applications, response time refers to the

time elapsed between the submission of a request and the receipt of the resulting HTML. While

calculating the response time from JMeter, it does not takes into account the rendering time

required by the browser to load the HTML. Thus, Response Time is just the exact time between

sending the request and receiving it. The average response time is determined by the Blue Line

in the above graphs. The Red Line represents the Deviation which is the deviation from the

average response times which can take place if some percent of the samples have less response

 36

times while others have high. The main statistics for the analysis of the load on the web

application comes from the Average Response Time and the Deviation readings.

Analyzing the search page results we find that, when the number of users are too less i.e.

10 the Response time comes up to approx .5 seconds which is reasonable enough. When the

number of users are increased to 100 the Response Time increases to approx 6 seconds

indicating more load on the application. Initially when the application starts, the number of users

are less for the first few seconds so the Average and Deviation increase parallel but as the

number of users are increased the deviation starts decreasing to a constant line and at the same

time the Average increases to a constant line. Thus, the Average Time comes up to 6 seconds

and Deviation to .4 seconds. Gradually, when the load on the application is too high the

Deviation shoots up and the readings come close to Average line. Increasing more number of

users i.e. 500 the Average Time further increases to 5 seconds over 80,000 samples. The same

scenario can be scene with this case with Average and Deviation moving parallel and then

deviation reduces when number of samples increase and finally the deviation shoots upcoming

parallel to Average. Finally, incrementing the number of users to 1000 takes the maximum

Average Response Time and puts more load on the application. Analyzing the Throughput i.e.

number of requests per minute we figure out that it is increases and then comes to a constant and

a reasonable value.

The results can be explained for the Details page. The figures and Tables above indicate

the Response Time and Throughputs for the same number of users i.e. 100, 500, 1000.

Looking at the results and the analysis it is evident that for this application and the above

mentioned system configuration the application works fine with 100 users but as we increase the

number of users the application starts hanging up indicating the increase of load at the server.

The main reason for these performance results is the fault of the system level and the probable

reason for it is its configuration. If we have to increase the performance of the application we

need to work on the system configuration and upgrade it but before that it is important to figure

out which part of the system would shoot up the application’s performance. The main factors

which might be cause the application to have low performance are: CPU, RAM and Hard Disk.

Out of the three if the performance degradation takes place because of the low CPU processing

then it is because of Thrashing and so the better CPU configuration is required to handle more

 37

users. In order to confirm this assumption we need to look for the evidence and figure out which

one needs to be improved.

Since the application was not able to handle the load properly for 100 users, I performed

the tests for 10, 40 and 50 users. To confirm if the RAM was degrading the performance, I

performed the same tests simultaneously at two machines with the same configuration but

different RAM’s. Both these machines have the application deployed in it and could make out

that the performance was still the same. I tested it for CPU by running this application on my

laptop and then taking the results in JMeter, when the number of users were increased from 40 to

50 and so on the CPU started blinking indicating the increase of load put on it and also the Task

Manager gave a good indication about the amount of time the CPU is taking for testing the

application. Table 5.9 show the increase in Response Times with the increase in load i.e. number

of users.

Users Average Response Times (ms)

10 532

40 2543

50 3120

Table 5.9: Average Response Times Summary.

This confirms that the CPU needs to get upgraded with high configuration in order to get

good performance results for more users. The CPU can be upgraded with a better processor

speed i.e. more than 2 GHz in order to increase the performance load. Table 5.10 shows the

results of the system configuration testing.

System Part CPU Hard Disk RAM Reason

Performance Low High High Low Processor

Speed

Table 5.10: System configuration testing for Performance Upgrade.

 38

5.3 Screen Shots of Tested Web Pages

5.3.1 About Us Webpage

Figure 5.10 Screenshot of About Us Webpage

 39

5.3.2 Search Webpage

Figure 5.11 Screenshot of Search Webpage

 40

Figure 5.12 Screenshot of Search Webpage with Drag and Drop Tool

5.3.3 Details Webpage

Figure 5.13 Screenshot of Details Webpage

 41

CHAPTER 6 - Project Metrics and Experience

This chapter presents the project metrics showing the number of hours spent completing

each phase of the project. It also summarizes the experiences gained during the entire life-cycle

of the project.

6.1 Project Metrics

 Project Metrics are the indicators that track the ongoing project progress. The Project

Metrics discussed in this document are source lines of code and the amount of time spent during

the entire project span. Table 1 and Table 2 represent the project metrics: source lines of code

and project phases and their duration respectively.

ASP.NET & C# Server Side Code Handwritten C# Code – 1180 lines approx.

Auto-generated C# Code – 750 lines approx.

SQL Code 300 lines

CSS Code 500 lines

Table 6.1: Project Lines of Code

Learning Project Technologies 1 Week

Requirement Gathering and Design 2 Week

Implementation 4 Weeks

Testing 1 Week

Documentation 2 Weeks

Table 6.2: Project Planning Phase

 42

6.2 Overall Experience

 The idea of developing Real Estate Web Application originated when an immediate

requirement aroused from local Real Estate Company to develop a new website for them. This

company had its own website in production but wanted to re-design it with some attractive

features which could help them fetch more business. The project started with an intention to

develop an application specific to the needs of this company but later due to the lack of funds the

project could not be continued. But with the continuous support of Dr. Andresen this application

came into development. There are hundreds of real estate websites on the World Wide Web with

same features but the intention of building this application was to design something new and

innovative and include some cool features which have not been incorporated in these websites so

far. The biggest challenge involved in this project was to gather the requirements and design its

structure so that it can altogether have a new look. It also involved thinking about new features

which can be incorporated in this application and could make the search of listings much easier

for the real estate buyers. Understanding the structure of the application was the biggest problem

on the start of the project. Finally, the scope of this application was defined which greatly helped

in understanding what all features have to be included in the project. The whole emphasis in this

application is given on the search criteria to help buyers to search for new property listings.

 After the Requirement Specification, learning .NET 2005 and new AJAX controls was

the second phase which gave me a great learning experience. From my past knowledge of .NET,

working with the new version of Microsoft Visual Studio was not a big problem but

incorporating AJAX features to it was a deal. I spent around two weeks of time learning these

technologies with the help of online tutorials and sample applications. This learning brought me

in a very comfortable position to think about what new AJAX features I can put up in the

application.

 Another problem I faced in my project was the implementation of the drag and drop tool

which was required to store the saved listings by the buyer. Traditionally, to save the listings the

buyer has to register to the website so that the selected listings can be saved corresponding to the

account of the user but this project implements this using the session. As soon as the user starts a

search a new session is created and during this session the buyer can store the listings in the tool

 43

by dragging and dropping it on the listing cart. Once the user resets the search or starts a new

search, a new session is created and the saved listings are lost. This session based application

does not force the buyer to log in or register to just select the property listings.

 I have learnt also of new things while developing dynamic web-applications using

Microsoft ASP.NET and AJAX. This project gave me an opportunity to learn a lot of new

concepts in programming and web development such as Java Script, AJAX controls and

ASP.NET 2.0 which would help me throughout my career.

 44

CHAPTER 7 - Conclusion and Future Work

This chapter describes the future scope and extensions for the project. There is still a

huge scope of implementing something new and more to the project which can make it to the

level of a commercial product. This section also concludes stating the advantages and

applications of this Real Estate Web Application.

7.1 Conclusion

This Real Estate Web Application is a typical .NET web application using ASP.NET 2.0

and SQL 20005 in the C# programming language. It uses a client/server architecture based on the

HTTP protocol. It is developed in Microsoft’s Visual Studio .NET programming environment.

The buyer performs a search for the property listings by putting either Zip code/City/State or

MLS# in the search textbox. The business logic tier communicates with the database tier

requesting the results of the query sent by it. The results obtained by the database are displayed

on the data grid, by refreshing the grid rather than refreshing the entire web page. Efficiency of

the application is improved by the use of web methods that help in separating Application Tier

from the Presentation Tier. The performance of this application is evaluated by rigorously testing

it against various test scenarios. Efficiency and correctness of the application is evaluated with

the help of various test cases. Some ways in which this system could be enhanced with additional

functionalities are discussed in the section.

7.2 Future Extensions to the Project

This project is developed as a master’s project and still gives lot of scope for its extension

which could be made to the project if it is going to be developed as commercial product. We can

use pure object-oriented domain model to deal the database access tier using Visual Studio 2005

and SQL Server 2005. In doing this, we can get a better architecture design which will improve

code efficiency and running performance. Besides, we can build XML web service programming

model that enables other applications to consume real estate web services built by us using

standard protocol such as HTTP, XML, XSD, SOAP and web services description language

(WSDL). This project just deals with the Home page and Search page to search for property

listings, more functionality can be added for searching the agents and offices making it a

complete application. The feature of providing Google Maps within this application adds up to

 45

the functionality of the website. With the advancement of technology, dynamic maps can be

generated using AJAX which can help the buyer locate a particular area where the property is

located in the Google Map. Inclusion of all these features would make the application feature

rich. The advantages of putting these functionalities in the project are described in detail in the

following sections.

7.2.1. Using Object-Oriented Domain Model

Visual Studio .NET 2005 and SQL Server 2005 add a significant feature of object-

oriented domain model. Instead of using traditional Relational Database Model, the database

access layer treat each table as class model and each row as instance object. It gives a friendly

development thought to the developer and makes the business logic more convenient when

interacting with the back end. Currently, there is a third-party tool called NEO which could

generate the domain model for database automatically. In using object-oriented domain model,

the database is transported to the developer and the application using these domain classes to

handle data processing instead of using disconnected Dataset or typed Dataset.

7.2.1.1 Providing Web Services

XML and web services are used to build highly scalable, loosely coupled, distributed

application using standard web protocols such as HTTP, XML, and SOA. An XML web service

is a component that implements the program logic and provides functionality to other

applications. There are some examples such as Amazon.com, Google.com. WSDL is used to

describe XML web service and XML-based messaging is used to send and receive data.

Visual Studio .NET IDE has a powerful support to develop XML web services. We can

create a real estate web application which provides application logic to a client application. For

example, I can create a search function to search the houses based on the feature. The client can

call my web service and provide parameters to the search function and the web service will

return dataset containing the result house records list back to the client. We can create other

convenient functions and the client can easy build their own custom web application while still

using the programming logic from the server web services.

 46

7.2.1.2 Functionality Extensions

If we are going to develop commercial real estate web application based on this project,

we can add some more feature as the following:

1. We can provide a login page for buyers and store their username and password in the database

and can save the search criteria for the buyers. This will help the buyers to use the same search

criteria rather than creating a new criterion every time the buyer performs the search.

2. By using the AdRotator web control we could add more advertisement on the web site or links

to other web site.

3. Add agent and company search functionality.

4. Displaying the search results on Google Maps locating the area where the property listing is

located.

4. Refine this web site and make it friendly and pretty.

 47

References

 [1] ASP.NET and Web Development Overview,

http://msdn.microsoft.com/en-us/library/4w3ex9c2.aspx

[2] Microsoft Visual Studio Overview,

http://en.wikipedia.org/wiki/Microsoft_Visual_Studio#Visual_Studio_2005

[3] Microsoft SQL Server 2005,

http://en.wikipedia.org/wiki/Microsoft_SQL_Server

[4] 3-Tier System Architecture,

http://en.wikipedia.org/wiki/Multitier_architecture

[5] Introduction to ADO.NET,

http://en.wikipedia.org/wiki/ADO.NET

[6] Load Testing using Apache JMeter Testing Tool,

http://jakarta.apache.org/jmeter/

[7] Introduction to .NET Architecture,

http://www.devtopics.com/what-is-net/

[8] Common Language Infrastructure Definition,

http://en.wikipedia.org/wiki/Common_Language_Infrastructure

[9] AJAX – Bridging the Thin-Client Performance Gap,

http://www.ironspeed.com/articles/ajax-bridging%20the%20thin-

client%20performance%20gap/article.aspx

[10] 3-Tier Architecture

http://msdn.microsoft.com/en-us/library/4w3ex9c2.aspx
http://en.wikipedia.org/wiki/Microsoft_Visual_Studio#Visual_Studio_2005
http://en.wikipedia.org/wiki/Microsoft_SQL_Server
http://en.wikipedia.org/wiki/Multitier_architecture
http://en.wikipedia.org/wiki/ADO.NET
http://jakarta.apache.org/jmeter/
http://www.devtopics.com/what-is-net/
http://en.wikipedia.org/wiki/Common_Language_Infrastructure
http://www.ironspeed.com/articles/ajax-bridging%20the%20thin-%20%20%20%20%20%20%20%20client%20performance%20gap/article.aspx
http://www.ironspeed.com/articles/ajax-bridging%20the%20thin-%20%20%20%20%20%20%20%20client%20performance%20gap/article.aspx

 48

http://www.c-sharpcorner.com/

.

http://www.c-sharpcorner.com/

	CHAPTER 1 - Introduction
	1.1 Motivation
	1.2 Project Overview
	1.2.1 Project Introduction
	1.2.2 Problems with existing systems
	1.2.3 Objective
	1.2.4 Architecture

	1.3 Requirement Specification
	1.3.1 Scope
	1.3.2 Goal
	1.3.3 Assumptions
	1.3.4 Environment

	CHAPTER 2 - Developer Platform
	2.1 Microsoft .NET Framework

	CHAPTER 3 - Technologies
	3.1 Tools and Technologies
	3.1.1 ASP.NET 2.0
	3.1.2 Microsoft Visual Studio 2005
	3.1.3 Microsoft SQL Server 2005
	3.1.4 ADO.NET
	3.1.5 AJAX / ASP.NET 2.0 support for AJAX

	CHAPTER 4 - System Architecture
	4.1 System Architecture
	4.2 Architecture of Real Estate Web Application
	4.2.1 Presentation Tier
	4.2.2 Middle Tier
	4.2.2.1 Use Case Diagram
	4.2.2.2 Class Diagram
	4.2.3 Database Tier
	4.2.3.1 ER Diagram
	4.2.3.2 Database Schema

	CHAPTER 5 - Testing
	5.1 Unit Testing
	5.2 Performance Testing
	5.2 Testing Samples
	5.2.1 Search Web Page
	5.2.1.1 Test Case 1
	5.2.1.2 Test Case 2
	5.2.1.3 Test Case 3
	5.2.2 Details Web Page
	5.2.2.1 Test Case 1
	5.2.2.2 Test Case 2
	5.2.2.3 Test Case 3

	5.4 Test Analysis
	5.3 Screen Shots of Tested Web Pages
	5.3.1 About Us Webpage
	5.3.2 Search Webpage
	5.3.3 Details Webpage

	CHAPTER 6 - Project Metrics and Experience
	6.1 Project Metrics
	6.2 Overall Experience

	CHAPTER 7 - Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Extensions to the Project
	7.2.1. Using Object-Oriented Domain Model
	7.2.1.1 Providing Web Services
	7.2.1.2 Functionality Extensions

